Last visit was: 17 Jun 2025, 22:31 It is currently 17 Jun 2025, 22:31
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 Jun 2025
Posts: 102,085
Own Kudos:
Given Kudos: 93,894
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,085
Kudos: 733,218
 [26]
Kudos
Add Kudos
26
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
freedom128
Joined: 30 Sep 2017
Last visit: 01 Oct 2020
Posts: 942
Own Kudos:
1,321
 [5]
Given Kudos: 402
GMAT 1: 720 Q49 V40
GPA: 3.8
Products:
GMAT 1: 720 Q49 V40
Posts: 942
Kudos: 1,321
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
General Discussion
User avatar
nick1816
User avatar
Retired Moderator
Joined: 19 Oct 2018
Last visit: 17 Jun 2025
Posts: 1,853
Own Kudos:
7,730
 [4]
Given Kudos: 707
Location: India
Posts: 1,853
Kudos: 7,730
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
Thakurdas
Joined: 27 May 2018
Last visit: 05 Dec 2021
Posts: 40
Own Kudos:
Given Kudos: 23
GMAT 1: 730 Q48 V42
GMAT 1: 730 Q48 V42
Posts: 40
Kudos: 431
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I have calculated the whole log. It comes down to 10 to the power 11. So the answer should be C. But do they ask such questions in GMAT? If they do, there must be some way of doing it within 2 minutes which I cannot even begin to search for!
User avatar
unraveled
Joined: 07 Mar 2019
Last visit: 10 Apr 2025
Posts: 2,727
Own Kudos:
2,143
 [1]
Given Kudos: 764
Location: India
WE:Sales (Energy)
Posts: 2,727
Kudos: 2,143
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If \((10)^9+2(11)^1(10)^8+3(11)^2(10)^7+…+10(11)^9=k(10)^9\), then k is equal to

A. 121/10
B. 441/100
C. 100
D. 110
E. 120
Multiplying given equation's both sides by \(10^{-9}\)
\((10)^9*10^{-9} + 2(11)^1(10)^8*10^{-9} + 3(11)^2(10)^7*10^{-9} + 4(11)^3(10)^6*10^{-9} + 5(11)^4(10)^5*10^{-9} + 6(11)^5(10)^4*10^{-9}+\)
\(+ 7(11)^6(10)^3*10^{-9} + 8(11)^7(10)^2*10^{-9} + 9(11)^8(10)^1*10^{-9} + 10(11)^9*10^{-9} = k(10)^9*10^{-9}\)

\(1 + 2*11*10^{-1} + 3(11)^2*10^{-2} + 4(11)^3*10^{-3} + 5(11)^4*10^{-4} + 6(11)^5*10^{-5} + 7(11)^6*10^{-6}+\)
\(+ 8(11)^7*10^{-7} + 9(11)^8*10^{-8} + 10(11)^9*10^{-9} = k\)

\(1 + 2*1.1^1 + 3*1.1^2 + 4*1.1^3 + 51.1^4 + 6*1.1^5 + 7*1.1^6 + 8*1.1^7 + 9*1.1^8 + 10*1.1^9 = k\)

Solving for k gives ~ 100
(There must be a better way to solve it)

Answer C.
User avatar
lacktutor
Joined: 25 Jul 2018
Last visit: 23 Oct 2023
Posts: 662
Own Kudos:
1,301
 [3]
Given Kudos: 69
Posts: 662
Kudos: 1,301
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
If \((10)^9+2 (11)^{1}(10)^{8}+3 (11)^{2}(10)^{7}+…+10 (11)^{9}=k (10)^{9}\), then k is equal to

\(10^9*( 1 +2 (\frac{11}{10})+3 (\frac{11}{10})^{2}+…+10 (\frac{11}{10})^{9}=k (10)^{9}\)

\(k= 1 +2 (\frac{11}{10})+3 (\frac{11}{10})^{2}+…+10 (\frac{11}{10})^{9}\)
---------------------------------------------------------------------------------------------------------------------------------------------
--> multiply both sides by \(\frac{11}{10}\):
\(k(\frac{11}{10})= (\frac{11}{10}) + 2(\frac{11}{10})^{2} + 3(\frac{11}{10})^{3} +...+ 10(\frac{11}{10})^10\)

And subtract \(k\) from \(k(\frac{11}{10})\):

\(k(\frac{11}{10} -1)= -1 -( (\frac{11}{10}) + (\frac{11}{10})^{2} + (\frac{11}{10})^{3} +...+ (\frac{11}{10})^{9} ) + 10(\frac{11}{10})^{10}\)
---------------------------------------------------------------------------------------------------------------------------------------------
\((\frac{11}{10}) + (\frac{11}{10})^{2} + (\frac{11}{10})^{3} +...+ (\frac{11}{10})^{9}\) - geometric sequence

\(Sum = \frac{(\frac{11}{10})*(\frac{11}{10})^9 -1)}{(\frac{11}{10}-1)}= 11* (\frac{11}{10})^9 -1)\)


---------------------------------------------------------------------------------------------------------------------------------------------
\(k(\frac{11}{10} -1)= -1 - \frac{11^{10}}{10^{9}} +11 + \frac{11^{10}}{10^{9}}= 10\)

\(k (\frac{1}{10}) = 10\)
\(k =100\)

Answer (C)
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 17 Jun 2025
Posts: 20,961
Own Kudos:
Given Kudos: 293
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,961
Kudos: 26,011
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

Competition Mode Question



If \((10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + … + 10(11)^9 = k(10)^9\), then k is equal to

A. 121/10
B. 441/100
C. 100
D. 110
E. 120



Since 11 = 1.1 x 10, we can rewrite the left hand side of the equation as:

10^9 + 2(1.1 x 10)(10^8) + 3(1.1^2 x 10^2)(10^7) + … + 10(1.1^9 x 10^9) = k(10^9)

10^9 + 2(1.1)(10^9) + 3(1.1^2)(10^9) + … + 10(1.1^9 )(10^9) = k(10^9)

Dividing the equation by 10^9, we have:

1 + 2(1.1) + 3(1.1)^2 + … + 10(1.1^9) = k → Eq. 1

We need to find the value of k. Without a calculator, we can multiply the equation by 1.1 to obtain:

1.1 + 2(1.1)^2 + 3(1.1)^3 + … + 10(1.1^10) = 1.1k → Eq. 2

Subtracting Eq. 2 from Eq. 1 (by combining terms with the same powers of 1.1), we have:

1 + 1.1 + 1.1^2 + 1.1^3 + … + 1.1^9 - 10(1.1^10) = -0.1k → Eq. 3

Now we see that all the terms (except the last term) form a geometric sequence (notice that the first term 1 can be written as 1.1^0).

Recall that the sum of a finite geometric series is:

S_n = a_1 * (1 - r^n) / (1 - r)

where a_1 is the first term, n is the number of terms and r is the common ratio.

So the sum of the 10 positive terms (i.e., 1, 1.1, 1.1^2, …, 1.1^9) is:

S_10 = 1(1 - 1.1^10)/(1 - 1.1) = (1 - 1.1^10)/(-0.1)

Substituting this back into Eq. 3, we have:

(1 - 1.1^10)/(-0.1) - 10(1.1^10) = -0.1k

Multiply the above equation by -0.1, we have:

1 - 1.1^10 + 1.1^10 = 0.01k

1 = 0.01k

100 = k

Answer: C
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,218
Own Kudos:
Posts: 37,218
Kudos: 1,000
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.