Last visit was: 19 Nov 2025, 23:51 It is currently 19 Nov 2025, 23:51
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
barakhaiev
User avatar
Current Student
Joined: 10 Jul 2009
Last visit: 22 Oct 2011
Posts: 57
Own Kudos:
601
 [3]
Given Kudos: 60
Location: Ukraine, Kyiv
Concentration: BBA, Finance
GPA: 3.79
Posts: 57
Kudos: 601
 [3]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
hgp2k
Joined: 18 Aug 2009
Last visit: 02 Nov 2022
Posts: 192
Own Kudos:
Given Kudos: 13
Posts: 192
Kudos: 791
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
jlgdr
Joined: 06 Sep 2013
Last visit: 24 Jul 2015
Posts: 1,311
Own Kudos:
Given Kudos: 355
Concentration: Finance
Posts: 1,311
Kudos: 2,863
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,413
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jlgdr
barakhaiev
If a and b are positive, is \((a^-1 + b^-1)^-1\) less than \((a^-1b^-1)^-1\)?
(1) a = 2b
(2) a + b > 1

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.

I think that the formatting is messed up. What are those lines on top? Are they suppose to mean exponents?

Question: is \((a^{-1}+b^{-1})^{-1}<(a^{-1}*b^{-1})^{-1}\)? --> \((\frac{1}{a}+\frac{1}{b})^{-1}<(\frac{1}{ab})^{-1}\) --> \(\frac{ab}{a+b}<ab\), as \(a\) and \(b\) are positive we can reduce by \(ab\) and finally question becomes: is \(a+b>1\)?

(1) a = 2b --> is \(3b>1\) --> is \(b>\frac{1}{3}\), we don't know that, hence this statement is not sufficient.
(2) a + b > 1, directly gives an answer. Sufficient.

Answer: B.

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-a-and-b-are-positive-is-a-1-b-1-1-less-than-106509.html
Moderators:
Math Expert
105408 posts
496 posts