It is currently 23 Nov 2017, 13:16

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If ab different from 0 and points (-a,b) and (-b,a) are in

  post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 18 Oct 2008
Posts: 2

Kudos [?]: 12 [0], given: 0

If ab different from 0 and points (-a,b) and (-b,a) are in [#permalink]

Show Tags

New post 05 Apr 2010, 19:02
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

57% (00:00) correct 43% (01:12) wrong based on 40 sessions

HideShow timer Statistics

Hi, i need hel with these two problems!!!



A). If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

1)xy>0
2)ax>0



B).In the xy coordinate plane, line L and line K intersect at the point (4,3). Is the product of their slopes negative?

1).The product of the x-intersecets of lines L and K is posstive
2). The product of the y-intersecets of lines L and K is negative

OPEN DISCUSSION OF Q#1 IS HERE: https://gmatclub.com/forum/if-ab-0-and- ... 26039.html
OPEN DISCUSSION OF Q#1 IS HERE: https://gmatclub.com/forum/in-the-xy-co ... 93771.html

Kudos [?]: 12 [0], given: 0

1 KUDOS received
Manager
Manager
avatar
Joined: 20 Mar 2010
Posts: 83

Kudos [?]: 110 [1], given: 1

Re: If ab different from 0 and points (-a,b) and (-b,a) are in [#permalink]

Show Tags

New post 05 Apr 2010, 21:02
1
This post received
KUDOS
I will try to answer the first one

A). If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

1)xy>0
2)ax>0

if (-a,b) and (-b,a) are in the same quadrant then a and b should have same sign either both +ve or both -ve.
If both a and b are positive then (-a,b) and (-b,a) will be in 2nd quadrant.
If both are negative then they are in 4th quadrant

xy>0 -> Either both x and y are +ve or both x and y are -ve.
So (-x,y) is in 2nd quadrant or 4th quadrant. But there is no relation between a,b and x,y so (-a,b) (-b,a) and (-x,y) may or may not be in the same quadrant. stmt1 is insufficient

ax>0 a and x are both +ve or both -ve. If both positive then (-a,b) (-b,a) are in 2nd and (-x,y) is in 2nd or 3rd
a and x are both -ve then (-a,b) (-b,a) are in 4th and (-x,y) is in 1st or 4th. So again (-x,y) may or may not be in the same quadrant as (-a,b) (-b,a). stmt2 is insufficient

Combining both x and y are of same sign stmt1
a and x are of same sign stmt2
a and b are of same sign problem stem
So a,b,x,y all have same sign.
So (-x,y) is in the same quadrant as (-a,b) and (-b,a).

Answer C
_________________

___________________________________
Please give me kudos if you like my post

Kudos [?]: 110 [1], given: 1

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42338

Kudos [?]: 133141 [1], given: 12415

Re: If ab different from 0 and points (-a,b) and (-b,a) are in [#permalink]

Show Tags

New post 05 Apr 2010, 21:47
1
This post received
KUDOS
Expert's post
andresfigue wrote:
Hi, i need hel with these two problems!!!

A). If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

1)xy>0
2)ax>0


B).In the xy coordinate plane, line L and line K intersect at the point (4,3). Is the product of their slopes negative?

1).The product of the x-intersecets of lines L and K is posstive
2). The product of the y-intersecets of lines L and K is negative


Hi, and welcome to the Gmat Club. Below are the solutions to your questions:

A. If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points \((-a,b)\) and \((-b,a)\) are in the same quadrant means that \(a\) and \(b\) have the same sign. These points can be either in II quadrant, in case \(a\) and \(b\) are both positive, as \((-a,b)=(-,+)=(-b,a)\) OR in IV quadrant, in case they are both negative, as \((-a,b)=(+,-)=(-b,a)\) ("=" sign means here "in the same quadrant").

Now the point \((-x,y)\) will be in the same quadrant if \(x\) has the same sign as \(a\) (or which is the same with \(b\)) AND \(y\) has the same sign as \(a\) (or which is the same with \(b\)). Or in other words if all four: \(a\), \(b\), \(x\), and \(y\) have the same sign.

Note that, only knowing that \(x\) and \(y\) have the same sign won't be sufficient (meaning that \(x\) and \(y\) must have the same sign but their sign must also match with the sign of \(a\) and \(b\)).

(1) \(xy>0\) --> \(x\) and \(y\) have the same sign. Not sufficient.
(2) \(ax>0\) --> \(a\) and \(x\) have the same sign. But we know nothing about \(y\), hence not sufficient.

(1)+(2) \(x\) and \(y\) have the same sign AND \(a\) and \(x\) have the same sign, hence all four \(a\), \(b\), \(x\), and \(y\) have the same sign. Thus point \((-x,y)\) is in the same quadrant as points \((-a,b)\) and \((-b,a)\). Sufficient.

Answer: C.

B. In the xy coordinate plane, line L and line K intersect at the point (4,3). Is the product of their slopes negative?

We have two lines: \(y_l=m_1x+b_1\) and \(y_k=m_2x+b_2\). The question: is \(m_1*m_2<0\)?

Lines intersect at the point (4,3) --> \(3=4m_1+b_1\) and \(3=4m_2+b_2\)

(1) The product of the x-intersects of lines L and K is positive. Now, one of the lines can intersect x-axis at 0<x<4 (positive slope) and another also at 0<x<4 (positive slope), so product of slopes also will be positive BUT it's also possible one line to intersect x-axis at 0<x<4 (positive slope) and another at x>4 (negative slope) and in this case product of slopes will be negative. Two different answers, hence not sufficient.

But from this statement we can deduce the following: x-intersect is value of \(x\) for \(y=0\) and equals to \(x=-\frac{b}{m}\) --> so \((-\frac{b_1}{m_1})*(-\frac{b_2}{m_2})>0\) --> \(\frac{b_1b_2}{m_1m_2}>0\).

(2) The product of the y-intersects of lines L and K is negative. Now, one of the lines can intersect y-axis at 0<y<3 (positive slope) and another at y<0 (positive slope), so product of slopes will also be positive BUT it's also possible one line to intersect y-axis at y<0 (positive slope) and another at y>3 (negative slope) and in this case product of slopes will be negative. Two different answers, hence not sufficient.

But from this statement we can deduce the following: y-intercept is value of \(y\) for \(x=0\) and equals to \(x=b\) --> \(b_1*b_2<0\).

(1)+(2) \(\frac{b_1b_2}{m_1m_2}>0\) and \(b_1*b_2<0\). As numerator in \(\frac{b_1b_2}{m_1m_2}>0\) is negative, then denominator \(m_1m_2\) must also be negative. So \(m_1m_2<0\). Sufficient.

Answer: C.

In fact we arrived to the answer C, without using the info about the intersection point of the lines. So this info is not needed to get C.

For more on coordinate geometry check the link in my signature.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133141 [1], given: 12415

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 15507

Kudos [?]: 283 [0], given: 0

Premium Member
Re: If ab different from 0 and points (-a,b) and (-b,a) are in [#permalink]

Show Tags

New post 18 Oct 2017, 02:17
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 283 [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42338

Kudos [?]: 133141 [0], given: 12415

Re: If ab different from 0 and points (-a,b) and (-b,a) are in [#permalink]

Show Tags

New post 18 Oct 2017, 03:25
andresfigue wrote:
Hi, i need hel with these two problems!!!



A). If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

1)xy>0
2)ax>0



B).In the xy coordinate plane, line L and line K intersect at the point (4,3). Is the product of their slopes negative?

1).The product of the x-intersecets of lines L and K is posstive
2). The product of the y-intersecets of lines L and K is negative



OPEN DISCUSSION OF Q#1 IS HERE: https://gmatclub.com/forum/if-ab-0-and- ... 26039.html
OPEN DISCUSSION OF Q#1 IS HERE: https://gmatclub.com/forum/in-the-xy-co ... 93771.html

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133141 [0], given: 12415

Re: If ab different from 0 and points (-a,b) and (-b,a) are in   [#permalink] 18 Oct 2017, 03:25
Display posts from previous: Sort by

If ab different from 0 and points (-a,b) and (-b,a) are in

  post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.