It is currently 17 Oct 2017, 21:04

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If d=1/(2^3*5^7) is expressed as a terminating decimal, how

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 02 Dec 2012
Posts: 178

Kudos [?]: 3460 [0], given: 0

If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 20 Dec 2012, 06:11
61
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

57% (01:13) correct 43% (01:24) wrong based on 1830 sessions

HideShow timer Statistics

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten
[Reveal] Spoiler: OA

Kudos [?]: 3460 [0], given: 0

Expert Post
30 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41874

Kudos [?]: 128626 [30], given: 12180

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 20 Dec 2012, 06:12
30
This post received
KUDOS
Expert's post
39
This post was
BOOKMARKED
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128626 [30], given: 12180

Intern
Intern
avatar
Joined: 19 Oct 2013
Posts: 10

Kudos [?]: 13 [0], given: 13

Location: United States
Concentration: Finance, Technology
GMAT Date: 11-06-2013
GPA: 3.5
WE: Engineering (Investment Banking)
GMAT ToolKit User
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 24 Oct 2013, 03:15
1/2^3*5^7 = 2^-3*5^-7 =.002 * .0000007. So there are 2 non zero digits!!

Kudos [?]: 13 [0], given: 13

Expert Post
3 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41874

Kudos [?]: 128626 [3], given: 12180

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 24 Oct 2013, 03:28
3
This post received
KUDOS
Expert's post
Puneethrao wrote:
1/2^3*5^7 = 2^-3*5^-7 =.002 * .0000007. So there are 2 non zero digits!!


Unfortunately this is not correct:

\(2^{-3}=\frac{1}{8}=0.125\) not 0.002, which is 2/10^3 and \(5^{-7}=\frac{1}{78,125}=0.0000128\) not 0.0000007, which is 7/10^7.

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128626 [3], given: 12180

Intern
Intern
avatar
Joined: 19 Oct 2013
Posts: 10

Kudos [?]: 13 [0], given: 13

Location: United States
Concentration: Finance, Technology
GMAT Date: 11-06-2013
GPA: 3.5
WE: Engineering (Investment Banking)
GMAT ToolKit User
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 24 Oct 2013, 03:53
Bunuel wrote:
Puneethrao wrote:
1/2^3*5^7 = 2^-3*5^-7 =.002 * .0000007. So there are 2 non zero digits!!


Unfortunately this is not correct:

\(2^{-3}=\frac{1}{8}=0.125\) not 0.002, which is 2/10^3 and \(5^{-7}=\frac{1}{78,125}=0.0000128\) not 0.0000007, which is 7/10^7.

Hope it helps.

Thanks a lot!! I don't know what i was thinking , such a stupid mistake!! Thanks once again!

Kudos [?]: 13 [0], given: 13

Manager
Manager
avatar
Joined: 13 Jul 2013
Posts: 70

Kudos [?]: 12 [0], given: 21

GMAT 1: 570 Q46 V24
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 29 Dec 2013, 12:57
Bunuel wrote:
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.


I have seen couple of more problem like this. One thing is still not clear to me. When you multiply whole denominator by 2^4 why is 5^7 getting ignored? Shouldn't 2^4 multiply both 2^3 as well as 5^7?

Thanks

Kudos [?]: 12 [0], given: 21

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41874

Kudos [?]: 128626 [2], given: 12180

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 29 Dec 2013, 13:00
2
This post received
KUDOS
Expert's post
theGame001 wrote:
Bunuel wrote:
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.


I have seen couple of more problem like this. One thing is still not clear to me. When you multiply whole denominator by 2^4 why is 5^7 getting ignored? Shouldn't 2^4 multiply both 2^3 as well as 5^7?

Thanks


Frankly, the red part does not make any sense...

The denominator is \(2^7*5^7\). Multiply it by \(2^4\). What do you get?
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128626 [2], given: 12180

Intern
Intern
avatar
Joined: 29 Jan 2014
Posts: 1

Kudos [?]: [0], given: 0

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 11 Mar 2014, 16:54
Bunuel wrote:
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.


What is it that you saw that indicated you should multiply by 2^4. Just looking at the problem that never occurred to me and I'd like to understand why it did to you.

Kudos [?]: [0], given: 0

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41874

Kudos [?]: 128626 [1], given: 12180

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 11 Mar 2014, 23:36
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
WinterIsComing wrote:
Bunuel wrote:
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.


What is it that you saw that indicated you should multiply by 2^4. Just looking at the problem that never occurred to me and I'd like to understand why it did to you.


We need to multiply by 2^6/2^6 in order to convert the denominator to the base of 10 and then to convert the fraction into the decimal form: 0.xxxx.

Similar questions to practice:
if-t-1-2-9-5-3-is-expressed-as-a-terminating-decimal-ho-129447.html
if-d-1-2-3-5-7-is-expressed-as-a-terminating-decimal-128457.html

Hope this helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128626 [1], given: 12180

3 KUDOS received
Intern
Intern
User avatar
Joined: 24 Aug 2013
Posts: 5

Kudos [?]: 7 [3], given: 9

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 27 May 2014, 03:29
3
This post received
KUDOS
Another approach:

\(\frac{1}{(2^3*5^7)}\) =\(\frac{1}{(2^3*5^3*5^4)}\) by splitting denominator.

= \(\frac{1}{(10^3*5^4)}\) = \(\frac{10^{-3}}{5^4}\)

Representing numerator as\(\frac{(10^4*10^{-7})}{5^4}\) = \(2^4*10^{-7}\) = \(16*10^{-7}\)

=.0000016 , Hence 2 digits.

Answer B

Kudos [?]: 7 [3], given: 9

Intern
Intern
avatar
Joined: 31 Oct 2015
Posts: 37

Kudos [?]: 6 [0], given: 53

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 05 Jan 2016, 07:03
2^7 * 1/(10^7) * 2^-3 = 2^4 * 1/(10^7) = 16/10000000 = .000000016

Answer is 2

Kudos [?]: 6 [0], given: 53

Expert Post
3 KUDOS received
Target Test Prep Representative
User avatar
S
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 1545

Kudos [?]: 827 [3], given: 5

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 23 Jun 2016, 09:38
3
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


Since actually dividing 1/(2^3*5^7) would be time consuming, we want to manipulate d so that we are working with a cleaner denominator. The easiest way to do that is to multiply d by a value that will produce a perfect power of 10 in the denominator. This means that the number of 2s in the denominator will equal the number of 5s in the denominator.

Thus, we can multiply 1/(2^3*5^7) by 2^4/2^4. This gives us:

2^4/(2^7*5^7)

2^4/10^7

16/10^7

16/10,000,000

We can stop here because we know that the 10,000,000 in the denominator means to move the decimal place after the 16 seven places to the left. The final value of d will be 0.0000016. Note that the division of 16 by 10,000,000 did not produce any additional non-zero digits. Thus d has 2 non-zero digits.

Answer is B.
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 827 [3], given: 5

1 KUDOS received
Math Forum Moderator
User avatar
G
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 3003

Kudos [?]: 1085 [1], given: 325

Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User Premium Member
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 23 Jun 2016, 11:35
1
This post received
KUDOS
Walkabout wrote:
If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One
(B) Two
(C) Three
(D) Seven
(E) Ten


\(d\) = \(\frac{1}{(2^3*5^7)}\)

=>\(d\) = \(\frac{1}{(2^3*5^3*5^4)}\)

=>\(d\) = \(\frac{1}{(10^3*5^4)}\)

\(\frac{1}{5}\) = \(0.20\)

\(\frac{1}{25}\) = \(\frac{0.20}{5}\) => \(0.04\)

\(\frac{1}{125}\) = \(\frac{0.04}{5}\) => \(0.008\)

\(\frac{1}{625}\) = \(\frac{0.008}{5}\) => \(0.0016\)

Hence there will be 2 non zero digits...


Feel free to revert in case of any doubt ( I have used some shortcuts , would love to explain if needed )

_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Kudos [?]: 1085 [1], given: 325

Manager
Manager
avatar
B
Joined: 24 May 2014
Posts: 99

Kudos [?]: 9 [0], given: 355

Location: India
GMAT 1: 590 Q39 V32
GRE 1: 310 Q159 V151
GRE 2: 312 Q159 V153
GPA: 2.9
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 12 Sep 2016, 08:11
I solved the question in the following method, not sure whether it is correct:

1/2^3 x 5^7 = 1/2^3 x 5^3 [Equating the power of 2 & 5 to get the number of zeros], left with 1/5^4 = 1/625 = 0.00105. Only 1 & 5 are the non-zero digits.

Kudos [?]: 9 [0], given: 355

Manager
Manager
User avatar
B
Joined: 24 Aug 2016
Posts: 68

Kudos [?]: 17 [0], given: 24

Location: India
WE: Information Technology (Computer Software)
If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 12 Sep 2016, 08:23
I did it this way.

d = \(\frac{1}{8*25*25*25*5}\) = \(\frac{4*4*4*2}{8*100*100*100*10}\) = 16 * 10 ^ -6 ==> 2 non zero digits.
_________________

"If we hit that bullseye, the rest of the dominos will fall like a house of cards. Checkmate."

Kudos [?]: 17 [0], given: 24

Intern
Intern
User avatar
B
Status: Studying for GMAT (April '19)
Joined: 15 Jan 2017
Posts: 11

Kudos [?]: 7 [0], given: 44

Location: United Kingdom
Concentration: Finance, General Management
GPA: 3.5
GMAT ToolKit User
If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 25 Jan 2017, 13:45
(First ever post!)

I realise I'm a little late submitting my answer here, but my answer was 2 non-zero digits: 2 & 5.

My answer is based on the following:

1 / (2^3*5^7) = 1 / (2*(2^2))*(5^7) =
1 / (4x10^7) =
25 x 10^8 .

I'm guessing my mistake was in factoring the denominator, specifically factoring of 2^3 as 2x2^2?

Any input greatly appreciated,

Ben

EDIT:

Not to worry, I've gone over some other exponent materials and came up with the correct solution.

Kudos [?]: 7 [0], given: 44

Director
Director
avatar
G
Joined: 02 Sep 2016
Posts: 778

Kudos [?]: 41 [0], given: 267

Premium Member CAT Tests
If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 01 Apr 2017, 06:35
d=1/(2^3*5^7)

2*5=10 (Happy to know in such questions!!)
Write 2^3*5^3 together. (This will be equal to 2*2*2*5*5*5= 10^3)

d= 1/(10^3)(5^4)
d= [1/(10^3)] *(0.2)^4
d=[1/(10^3)] *(1.6)

Thus the non-zero digits in the final answer would be 2 i.e. 1 and 6.
_________________

Help me make my explanation better by providing a logical feedback.

If you liked the post, HIT KUDOS !!

Don't quit.............Do it.

Kudos [?]: 41 [0], given: 267

Manager
Manager
avatar
S
Joined: 13 Dec 2013
Posts: 172

Kudos [?]: 26 [0], given: 122

Location: United States (NY)
Concentration: Nonprofit, International Business
GMAT 1: 710 Q46 V41
GMAT 2: 720 Q48 V40
GPA: 4
WE: Consulting (Consulting)
Reviews Badge
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 29 Apr 2017, 11:47
1/[(2^3)(5^7)] = 1/(10^3)(5^4)
1/(10^3)=0.001
0.001/(5^4)=0.0000016

Kudos [?]: 26 [0], given: 122

Intern
Intern
avatar
B
Joined: 25 Mar 2017
Posts: 1

Kudos [?]: 0 [0], given: 1

Other method [#permalink]

Show Tags

New post 27 May 2017, 07:17
Split the two fraction 1/2^7 * 1/5^7
1/5^7 = (1/5)^7 = 0.2^7 = (2*10^-1)^7 = 2^7 * 10^-7
Multiply by 1/2^3 now you get:
2^7/2^3 * 10^-7 = 2^4 * 10^-7 = 16*10^-7

The two non zero digits are then 1 and 6.

Kudos [?]: 0 [0], given: 1

Math Forum Moderator
User avatar
G
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 3003

Kudos [?]: 1085 [0], given: 325

Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User Premium Member
Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

New post 27 May 2017, 08:15
narendran1990 wrote:
I solved the question in the following method, not sure whether it is correct:

1/2^3 x 5^7 = 1/2^3 x 5^3 [Equating the power of 2 & 5 to get the number of zeros], left with 1/5^4 = 1/625 = 0.00105. Only 1 & 5 are the non-zero digits.

Check the highlighted part

\(\frac{1}{625} = 0.0016\)

There will be 2 non zero digits...

_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Kudos [?]: 1085 [0], given: 325

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how   [#permalink] 27 May 2017, 08:15
Display posts from previous: Sort by

If d=1/(2^3*5^7) is expressed as a terminating decimal, how

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.