fskilnik
GMATH practice exercise (Quant Class 16)
If \(m\) and \(n\) are integers greater than 1, what is the value of \(\,{{\root m \of {{2^n}} + \root n \of {{2^m}} } \over {{2^m} + {2^n}}}\,\) ?
\(\left( 1 \right)\,\,m = n\)
\(\left( 2 \right)\,\,m + n = m \cdot n\)
\(m\,,n\,\, \ge 2\,\,\,{\rm{ints}}\,\,\,\,\,\left( * \right)\)
\(?\,\, = \,\,{{\root m \of {{2^n}} + \root n \of {{2^m}} } \over {{2^m} + {2^n}}}\)
\(\left( 1 \right)\,\,m = n\,\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {m,n} \right) = \left( {2,2} \right)\,\,\,\, \Rightarrow \,\,\,? = {{2 + 2} \over {4 + 4}} = {1 \over 2} \hfill \cr \\
\,{\rm{Take}}\,\,\left( {m,n} \right) = \left( {3,3} \right)\,\,\,\, \Rightarrow \,\,\,? = {{2 + 2} \over {8 + 8}} = {1 \over 4} \hfill \cr} \right.\)
\(\left( 2 \right)\,\,m \cdot n = m + n\)
\(\Rightarrow \,\,\,\,\,m\left( {n - 1} \right) = n\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,\,n - 1\,\,{\rm{is}}\,\,{\rm{a}}\,\,{\rm{divisor}}\,\,{\rm{of}}\,\,n\,\,\,\,\,\mathop \Rightarrow \limits_{GCF\left( {n - 1,n} \right)\,\, = \,\,1}^{\left( * \right)} \,\,\,\,\,n - 1 = 1\)
\(\left\{ \matrix{\\
\,n = 2 \hfill \cr \\
\,m \cdot n = m + n \hfill \cr} \right.\,\,\,\,\, \Rightarrow \,\,\,\,\,m = 2\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,?\,\,\,{\rm{unique}}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{\rm{SUFF}}.\)
The correct answer is therefore (B).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio