It is currently 17 Dec 2017, 04:15

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If m is a positive integer and m^2 is divisible by 48, then

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Intern
Intern
avatar
Joined: 18 Sep 2011
Posts: 9

Kudos [?]: 19 [1], given: 1

Location: Canada
Concentration: Strategy, General Management
GMAT Date: 11-29-2011
WE: Corporate Finance (Retail)
If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 10 Oct 2011, 11:42
1
This post received
KUDOS
6
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

72% (01:01) correct 28% (01:00) wrong based on 389 sessions

HideShow timer Statistics

If m is a positive integer and m^2 is divisible by 48, then the largest positive integer that must divide m is?

(A) 3
(B) 6
(C) 8
(D) 12
(E) 16


Can someone please explain this one? Knewton's explanation was not useful to me. Thx
OA
[Reveal] Spoiler:
D
[Reveal] Spoiler: OA

Kudos [?]: 19 [1], given: 1

Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 170

Kudos [?]: 182 [0], given: 10

Re: Division question [#permalink]

Show Tags

New post 10 Oct 2011, 11:56
Well m^2 is divisible by 48

if we brake 48 we will get 4*4*3

now we know that m is an integer therefore, m^2 is completely divisible by 48 then to get the square number that will be divided by 48 we need to multiply 48 by 3
so that we will get 4*4*3*3 ....
square root of the above number will be 4*3 = 12
thus m = 12 and the greatest number that will divide 12 is 12 itself ...thus the answer.

Kudos [?]: 182 [0], given: 10

1 KUDOS received
Manager
Manager
avatar
Joined: 21 Aug 2010
Posts: 186

Kudos [?]: 135 [1], given: 141

Location: United States
GMAT 1: 700 Q49 V35
GMAT ToolKit User
Re: Division question [#permalink]

Show Tags

New post 10 Oct 2011, 12:05
1
This post received
KUDOS
arcanis2000 wrote:
Q: If m is a positive integer and m^2 is divisible by 48, then the largest positive integer that must divide m is?

(A) 3
(B) 6
(C) 8
(D) 12
(E) 16


Can someone please explain this one? Knewton's explanation was not useful to me. Thx
OA
[Reveal] Spoiler:
D


M^2 is divisible by 48 so M^2 must be multiple of 48.
If the value of M is Multiples of 12 then it will satisfy the condition. If we If M is 12 or 24 or 36 then it ans is D but if M = 48 then answer should be 16.

Is the question right? Or am i missing some thing?
_________________

-------------------------------------

Kudos [?]: 135 [1], given: 141

Manager
Manager
avatar
Joined: 21 Aug 2010
Posts: 186

Kudos [?]: 135 [0], given: 141

Location: United States
GMAT 1: 700 Q49 V35
GMAT ToolKit User
Re: Division question [#permalink]

Show Tags

New post 10 Oct 2011, 12:07
vyassaptarashi wrote:
Well m^2 is divisible by 48

if we brake 48 we will get 4*4*3

now we know that m is an integer therefore, m^2 is completely divisible by 48 then to get the square number that will be divided by 48 we need to multiply 48 by 3
so that we will get 4*4*3*3 ....
square root of the above number will be 4*3 = 12
thus m = 12 and the greatest number that will divide 12 is 12 itself ...thus the answer.



This explanation looks fine but why M shouldn't be 48. There is no mention in the question about M's maximum limit.
_________________

-------------------------------------

Kudos [?]: 135 [0], given: 141

1 KUDOS received
Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 170

Kudos [?]: 182 [1], given: 10

Re: Division question [#permalink]

Show Tags

New post 10 Oct 2011, 12:22
1
This post received
KUDOS
Well, the largest integer, which will divide m, has asked in the question. This means there will be no other integer that will divide m is larger than what the answer is.
Also, It is not asked us that which of the following will be the largest integer that will divide m....

Thus m can not be 48 because the largest integer that divides 48 will be 48 ...which is not in the options, hence can not be correct. 16 is also not correct because it is the largest number in the options but larger that 16 divisors are also present.

Kudos [?]: 182 [1], given: 10

Senior Manager
Senior Manager
avatar
Status: D-Day is on February 10th. and I am not stressed
Affiliations: American Management association, American Association of financial accountants
Joined: 12 Apr 2011
Posts: 251

Kudos [?]: 376 [0], given: 52

Location: Kuwait
Schools: Columbia university
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 10 Oct 2011, 14:45
ok, I will try to explain this as best as possible.
the following is a tree diagram, or columns. hope it is easy to see it

m^2____m__ 2 2
____m__ 2 2 3

so, 2 * 2* 3= 12

In another words,
find out the prime factors of 48, ( 2,2,2,2,3)

, you know that M^2 is m repeated twice, so you

should distribute the the prime factors evenly

among the 2 m's, the 3 will be left over so you

should just put it out there under one of the m's.

Now, for every columns take one common number

which is 2 for the first columns, 2 for the second

column and 3 in the last column. multiplying the

prime factors ( 2*2*3) = 12...


my advice, if you google MGMAT number properties, you will find it in a PDF, just download it and read chpt 1 and 10, very helpful for these types of problems
best of luck :)
_________________

Sky is the limit

Kudos [?]: 376 [0], given: 52

1 KUDOS received
Director
Director
avatar
Joined: 01 Feb 2011
Posts: 706

Kudos [?]: 150 [1], given: 42

Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 10 Oct 2011, 16:37
1
This post received
KUDOS
m^2 is divisible by 48

=> 48 is a factor of m^2

=> 2^4*3 is a factor of m^2

to make the above number a perfect square m^2 must have another 3 as a factor

=> (2^4)*(3^2) must be a factor of m^2

=> (2^2)*(3^1) = 12 must be a factor of m.

Answer is D

Kudos [?]: 150 [1], given: 42

Director
Director
avatar
Joined: 01 Feb 2011
Posts: 706

Kudos [?]: 150 [0], given: 42

Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 10 Oct 2011, 18:31
its mentioned indirectly by saying m has to be an integer.

if m^2 is not a perfect square then m will not be an integer.

for m to be in an integer, m^2 has to be a perfect square.

lets say m^2=48*3 = 144 (perfect square ) => m =12 (integer)

lets say m^2 = 48(not a perfect square) = > m= sqrt(48) = 2*sqrt(12) (not an integer)

arcanis2000 wrote:
@manalq8: Ok, I will try to download the pdf you mentioned.

@Spidy001: The perfect square is what Knewton gave as part of the answer. In what part of this question does it suggest that M^2 has to be a perfect square? What am I missing?

Thx

Kudos [?]: 150 [0], given: 42

Intern
Intern
avatar
Joined: 06 Nov 2011
Posts: 36

Kudos [?]: 8 [0], given: 50

Location: Germany
Concentration: Entrepreneurship, General Management
GMAT Date: 03-10-2012
GPA: 3
GMAT ToolKit User
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 00:25
I dont Get it. Factors of 48 are= 2,2,2,2 and 3 and we know that 48 is a factor of m. Therefor 48 is also a factor of m^2.
So (2^4)*3 is a factor of m and m^2. But how do you come to the solution of 12? I don't see the link between (2^4)*3 and (2^2)*(3^2). Can someone explain please?

Posted from my mobile device

Kudos [?]: 8 [0], given: 50

Manager
Manager
avatar
Joined: 31 Jan 2012
Posts: 73

Kudos [?]: 27 [0], given: 2

Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 00:49
m^2 is a divisor of 48. M =/= divisor of 48.

Find the prime factors of 48, [2,2,2,2,3]. When you root square a number you double the amount of it's divisor, so if you root them number it should be half. So divide in half all the repeating multiples. You know there must be a 3, since 3 is a prime and no 2 integer forms a multiple of 3. Also half the 2s are gone so you have a two 2s left. 3*2*2 = 12.

Kudos [?]: 27 [0], given: 2

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42646

Kudos [?]: 135935 [0], given: 12716

Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 02:25
Expert's post
5
This post was
BOOKMARKED
M3tm4n wrote:
I dont Get it. Factors of 48 are= 2,2,2,2 and 3 and we know that 48 is a factor of m. Therefor 48 is also a factor of m^2.
So (2^4)*3 is a factor of m and m^2. But how do you come to the solution of 12? I don't see the link between (2^4)*3 and (2^2)*(3^2). Can someone explain please?

Posted from my mobile device


If m is a positive integer and m^2 is divisible by 48, then the largest positive integer that must divide m is?
(A) 3
(B) 6
(C) 8
(D) 12
(E) 16

m^2 is a positive perfect square divisible by 48, the least such perfect square is 144=48*3=12^2. Thus the least value of m is 12, which means that m in any case must be divisible by 12.

Answer: D.

Similar questions to practice:
http://gmatclub.com/forum/properties-of ... 90523.html
http://gmatclub.com/forum/if-m-and-n-ar ... 08985.html
http://gmatclub.com/forum/property-of-i ... 04272.html
http://gmatclub.com/forum/if-x-and-y-ar ... 00413.html
http://gmatclub.com/forum/number-properties-92562.html
http://gmatclub.com/forum/can-someone-a ... 92066.html
http://gmatclub.com/forum/og-quantitative-91750.html
http://gmatclub.com/forum/division-factor-88388.html
http://gmatclub.com/forum/if-5400mn-k4- ... 09284.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135935 [0], given: 12716

Manager
Manager
avatar
Joined: 10 Jan 2010
Posts: 181

Kudos [?]: 31 [0], given: 7

Location: Germany
Concentration: Strategy, General Management
Schools: IE '15 (M)
GPA: 3
WE: Consulting (Telecommunications)
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 02:36
Am i right if i say:
M^2 must be a multiple of 48. 48 in prime factors: 2^4 * 3^1. Thus at least the interger must have one 3 and of course a few 2´s

Greated integer which is divisible by m and an factor of m^2 would be 12...

Kudos [?]: 31 [0], given: 7

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42646

Kudos [?]: 135935 [1], given: 12716

Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 02:43
1
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
MSoS wrote:
Am i right if i say:
M^2 must be a multiple of 48. 48 in prime factors: 2^4 * 3^1. Thus at least the interger must have one 3 and of course a few 2´s

Greated integer which is divisible by m and an factor of m^2 would be 12...


Algebraic way: \(m^2=48*k=2^4*3*k\), where \(k\) is some positive integer. \(m=\sqrt{2^4*3*k}=2^2*\sqrt{3k}\) --> the least value of \(k\) for which \(m\) is an integer (hence the least value of \(m\)) is for \(k=3\) --> \(m=2^2*\sqrt{3*3}=12\), hence \(m\) in any case is divisible by 12..

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135935 [1], given: 12716

Manager
Manager
avatar
Joined: 10 Jan 2010
Posts: 181

Kudos [?]: 31 [0], given: 7

Location: Germany
Concentration: Strategy, General Management
Schools: IE '15 (M)
GPA: 3
WE: Consulting (Telecommunications)
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 02:46
yeah it is clear! Thanks, i wish i could explain it always like you did now. :)

Kudos [?]: 31 [0], given: 7

Manager
Manager
avatar
Status: MBA Aspirant
Joined: 12 Jun 2010
Posts: 171

Kudos [?]: 106 [0], given: 1

Location: India
Concentration: Finance, International Business
WE: Information Technology (Investment Banking)
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 09 Feb 2012, 06:01
Bunnel thanks for the explanation

Kudos [?]: 106 [0], given: 1

Manager
Manager
avatar
B
Joined: 07 May 2015
Posts: 102

Kudos [?]: 15 [0], given: 6

GMAT ToolKit User
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 21 Jul 2015, 12:36
Bunuel wrote:
MSoS wrote:
Am i right if i say:
M^2 must be a multiple of 48. 48 in prime factors: 2^4 * 3^1. Thus at least the interger must have one 3 and of course a few 2´s

Greated integer which is divisible by m and an factor of m^2 would be 12...


Algebraic way: \(m^2=48*k=2^4*3*k\), where \(k\) is some positive integer. \(m=\sqrt{2^4*3*k}=2^2*\sqrt{3k}\) --> the least value of \(k\) for which \(m\) is an integer (hence the least value of \(m\)) is for \(k=3\) --> \(m=2^2*\sqrt{3*3}=12\), hence \(m\) in any case is divisible by 12..

Hope it's clear.


Thanks alot for the help here. I have a quick doubt, the question is asking for the largest value of the largest value of m. Why are we finding the least value of m. What am I missing here.

Thanks in advance!

Kudos [?]: 15 [0], given: 6

Current Student
avatar
B
Joined: 20 Mar 2014
Posts: 2673

Kudos [?]: 1791 [0], given: 797

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 21 Jul 2015, 13:08
neeraj609 wrote:
Bunuel wrote:
MSoS wrote:
Am i right if i say:
M^2 must be a multiple of 48. 48 in prime factors: 2^4 * 3^1. Thus at least the interger must have one 3 and of course a few 2´s

Greated integer which is divisible by m and an factor of m^2 would be 12...


Algebraic way: \(m^2=48*k=2^4*3*k\), where \(k\) is some positive integer. \(m=\sqrt{2^4*3*k}=2^2*\sqrt{3k}\) --> the least value of \(k\) for which \(m\) is an integer (hence the least value of \(m\)) is for \(k=3\) --> \(m=2^2*\sqrt{3*3}=12\), hence \(m\) in any case is divisible by 12..

Hope it's clear.


Thanks alot for the help here. I have a quick doubt, the question is asking for the largest value of the largest value of m. Why are we finding the least value of m. What am I missing here.

Thanks in advance!


The question is asking for the largest values from the given options. You are supposed to find which one of the 5 options gives you the correct answer. You are confusing between finding the "maximum possible value" when no options are given and "maximum possible value" out of the given options. For our use, the least value worked . If lets say the least did not work, we could have looked for a multiple of 12 (say 24 or 26 or 48 etc.).

Kudos [?]: 1791 [0], given: 797

Manager
Manager
avatar
B
Joined: 07 May 2015
Posts: 102

Kudos [?]: 15 [0], given: 6

GMAT ToolKit User
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 21 Jul 2015, 16:18
Thanks alot for the response. I was also able find the explanation from on of the another post from Bunnel.

Kudos [?]: 15 [0], given: 6

Expert Post
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1945

Kudos [?]: 1023 [0], given: 3

Location: United States (CA)
Re: If m is a positive integer and m^2 is divisible by 48, then [#permalink]

Show Tags

New post 12 Dec 2017, 07:11
arcanis2000 wrote:
If m is a positive integer and m^2 is divisible by 48, then the largest positive integer that must divide m is?

(A) 3
(B) 6
(C) 8
(D) 12
(E) 16


We are given that m^2/48 = integer or (m^2)/(2^4)(3^1) = integer.

However, since m^2 is a perfect square, we need to make 48 or (2^4)(3^1) a perfect square. Since all perfect squares consist of unique prime, each raised to an even exponent, the smallest perfect square that divides into m^2 is (2^4)(3^2) = 144.

Thus, m^2/144 = integer

Since m^2 is divisible by 144, we see that the largest value that divides m is 12.

Answer: D
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1023 [0], given: 3

Re: If m is a positive integer and m^2 is divisible by 48, then   [#permalink] 12 Dec 2017, 07:11
Display posts from previous: Sort by

If m is a positive integer and m^2 is divisible by 48, then

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.