Last visit was: 18 Nov 2025, 18:35 It is currently 18 Nov 2025, 18:35
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
605-655 Level|   Multiples and Factors|   Must or Could be True Questions|   Number Properties|                                          
avatar
amitvmane
Joined: 27 Mar 2012
Last visit: 23 Oct 2012
Posts: 6
Own Kudos:
902
 [895]
Given Kudos: 1
Posts: 6
Kudos: 902
 [895]
59
Kudos
Add Kudos
830
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [337]
95
Kudos
Add Kudos
241
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,331
 [160]
113
Kudos
Add Kudos
47
Bookmarks
Bookmark this Post
User avatar
ziko
Joined: 28 Feb 2012
Last visit: 29 Jan 2014
Posts: 91
Own Kudos:
217
 [52]
Given Kudos: 17
Concentration: Strategy, International Business
GPA: 3.9
WE:Marketing (Other)
Posts: 91
Kudos: 217
 [52]
39
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
Normally i divide the number into the primes just to see how many more primes we need to satisfy the condition, so in our case:
n^2/72=n*n/2^3*3^2, in order to have minimum in denominator we should try modify the smallest number. If we have one more 2 then the n*n will perfectly be devisible to 2^4*3^2 from here we see that the largest number is 2*2*3=12
Hope i explained my thought.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [30]
23
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
catennacio
Bunuel
Merging similar topics.

raviram80
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks

The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.

I spent a few hours on this one alone and I'm still not clear. I chose 12 at first, but then changed to 48.

I'm not a native speaker, so here is how I interpreted this question: "the largest positive integer that must divide n" = "the largest positive factor of n". Since n is a variable (i.e. n is moving), so is its largest factor. Please correct if I'm wrong here.

I know that if n = 12, n^2 = 144 = 2 * 72 (satisfy the condition). When n = 12, the largest factor of n is n itself, which is 12. Check: 12 is the largest positive number that must divide 12 --> true

However if n = 48, n^2 = 48 * 48 = 32 * 72 (satisfy the condition too). When n = 48, the largest factor of n is n itself, which is 48. Check: 48 is the largest positive number that must divide 48 --> true

So, I also notice that the keyword is "MUST", not "COULD". The question is, why is 48 not "MUST divide 48", but instead only "COULD divide 48"? I'm not clear right here. Why is 12 "MUST divide 12"? What's the difference between them?

Thanks,

Caten

Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.
User avatar
nishtil
Joined: 10 Jan 2011
Last visit: 08 Feb 2015
Posts: 70
Own Kudos:
361
 [23]
Given Kudos: 25
Location: India
GMAT Date: 07-16-2012
GPA: 3.4
WE:Consulting (Consulting)
Products:
Posts: 70
Kudos: 361
 [23]
16
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
I approach this problem by prime factorisation.
any square must have 2 pairs of prime factors.
prime factorisation of 72 has 2*2, 3*3 and 2. n^2 must have one more 2 as a prime factor. Hence lasrgest number which must devide n is 2*3*2 = 12
General Discussion
User avatar
raviram80
Joined: 09 Jul 2010
Last visit: 20 Jun 2012
Posts: 65
Own Kudos:
133
 [7]
Given Kudos: 2
Posts: 65
Kudos: 133
 [7]
6
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then
the largest positive integerthat must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.


Please explain.

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [18]
13
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
Merging similar topics.

raviram80
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks

The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.
avatar
catennacio
Joined: 15 Apr 2010
Last visit: 29 Nov 2022
Posts: 35
Own Kudos:
109
 [2]
Given Kudos: 11
Posts: 35
Kudos: 109
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Merging similar topics.

raviram80
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks

The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.

I spent a few hours on this one alone and I'm still not clear. I chose 12 at first, but then changed to 48.

I'm not a native speaker, so here is how I interpreted this question: "the largest positive integer that must divide n" = "the largest positive factor of n". Since n is a variable (i.e. n is moving), so is its largest factor. Please correct if I'm wrong here.

I know that if n = 12, n^2 = 144 = 2 * 72 (satisfy the condition). When n = 12, the largest factor of n is n itself, which is 12. Check: 12 is the largest positive number that must divide 12 --> true

However if n = 48, n^2 = 48 * 48 = 32 * 72 (satisfy the condition too). When n = 48, the largest factor of n is n itself, which is 48. Check: 48 is the largest positive number that must divide 48 --> true

So, I also notice that the keyword is "MUST", not "COULD". The question is, why is 48 not "MUST divide 48", but instead only "COULD divide 48"? I'm not clear right here. Why is 12 "MUST divide 12"? What's the difference between them?

Thanks,

Caten
avatar
catennacio
Joined: 15 Apr 2010
Last visit: 29 Nov 2022
Posts: 35
Own Kudos:
109
 [9]
Given Kudos: 11
Posts: 35
Kudos: 109
 [9]
8
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel


Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.

Thank you very much Bunuel. Very clear now. Now I understand what "must" means. It means it will be always true regardless of n. As you said (and I chose), when n = 24 or 36 or 48, the answer 48 can divide 48, but cannot divide 12. So the "must" here is not maintained. In this case we have to choose the largest factor of the least possible value of n to ensure that largest factor is also a factor of other values of n. Therefore the least value of n is 12, the largest factor of 12 is also 12. This factor also divides other n values, for all n such that n^2 = 72k.

My mistake was that I didn't understand the "must" wording and didn't check whether my answer 48 can divide ALL possible values of n, including n=12. This is what "must" mean.

Again, thanks so much!

Caten
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,078
 [6]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [6]
2
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
catennacio
Bunuel


Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.

Thank you very much Bunuel. Very clear now. Now I understand what "must" means. It means it will be always true regardless of n. As you said (and I chose), when n = 24 or 36 or 48, the answer 48 can divide 48, but cannot divide 24 and 36. So the "must" here is not maintained. In this case we have to choose the largest factor of the least possible value of n to ensure that largest factor also a factor of other values of n. Therefore the least value of n is 12, the largest factor of 12 is also 12. This factor also divides other n values, for all n such that n^2 = 72k.

My mistake was that I didn't understand the "must" wording and didn't check whether my answer 48 can divide ALL possible values of n, including n=12. This is what "must" mean.

Again, thanks so much!

Caten

More must/could be true questions from our question banks (viewforumtags.php) here: search.php?search_id=tag&tag_id=193

Hope it helps.
User avatar
actionj
Joined: 24 Mar 2013
Last visit: 18 Feb 2016
Posts: 48
Own Kudos:
21
 [2]
Given Kudos: 10
Posts: 48
Kudos: 21
 [2]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The explanations above are much clearer to me than the explanation offered in the official Gmat guide;

"Since 72k=(2^3)(3^2)k, then k=2m^2 for some positive integer m in order for 72k to be a perfect square."

Why must k=2m^2?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,078
 [3]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
actionj
The explanations above are much clearer to me than the explanation offered in the official Gmat guide;

"Since 72k=(2^3)(3^2)k, then k=2m^2 for some positive integer m in order for 72k to be a perfect square."

Why must k=2m^2?

A perfect square has its primes in even powers, thus k must complete odd power of 2 into even, hence 2, and it also can have some other integer in even power, hence m^2.

Hope it's clear.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [14]
3
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
User avatar
b2bt
Joined: 25 Sep 2012
Last visit: 14 Apr 2024
Posts: 198
Own Kudos:
631
 [14]
Given Kudos: 242
Location: India
Concentration: Strategy, Marketing
GMAT 1: 660 Q49 V31
GMAT 2: 680 Q48 V34
Products:
GMAT 2: 680 Q48 V34
Posts: 198
Kudos: 631
 [14]
11
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
\(\frac{n*n}{72}\) = \(\frac{n*n}{2*2*2*3*3}\)
This means n should be at least 2*2*3. Otherwise \(n^2\) won't be divisible by 72

What is the largest integer that can divide n?
Let's see, largest integer that can divide 2? 2
Largest integer that can divide 3? 3
Largest integer that can divide n is n itself

Answer B
Time Taken 2:31
Difficulty level 650
User avatar
arunspanda
Joined: 04 Oct 2013
Last visit: 31 Oct 2021
Posts: 127
Own Kudos:
333
 [5]
Given Kudos: 55
Location: India
GMAT Date: 05-23-2015
GPA: 3.45
Products:
Posts: 127
Kudos: 333
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

(A) 6
(B) 12
(C) 24
(D) 36
(E) 48


Given that, n is a positive integer and n^2 is divisible by 72 means that n^2 is a perfect square that is lowest multiple of 72.

Or, the lowest multiple of 72 that is a perfect square is 144.

So, n^2 = 144q, q is some positive integer => 12 is a factor of n.

Answer: (B)
User avatar
itsworththepain
Joined: 07 Jun 2014
Last visit: 17 May 2022
Posts: 12
Own Kudos:
Given Kudos: 43
Location: India
GMAT 1: 720 Q49 V38
GPA: 2.91
WE:Consulting (Energy)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION

If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

(A) 6
(B) 12
(C) 24
(D) 36
(E) 48

The largest positive integer that must divide \(n\), means for the least value of \(n\) which satisfies the given statement in the question. The lowest square of an integer, which is multiple of \(72\) is \(144\) --> \(n^2=144=12^2=72*2\) --> \(n_{min}=12\). Largest factor of \(12\) is \(12\).

OR:

Given: \(72k=n^2\), where \(k\) is an integer \(\geq1\) (as \(n\) is positive).

\(72k=n^2\) --> \(n=6\sqrt{2k}\), as \(n\) is an integer \(\sqrt{2k}\), also must be an integer. The lowest value of \(k\), for which \(\sqrt{2k}\) is an integer is when \(k=2\) --> \(\sqrt{2k}=\sqrt{4}=2\) --> \(n=6\sqrt{2k}=6*2=12\)

Answer: B.

Similar questions to practice:

if-n-is-a-positive-integer-and-n-2-is-divisible-by-96-then-127364.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-90523.html
n-is-a-positive-integer-and-k-is-the-product-of-all-integer-104272.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html
if-m-and-n-are-positive-integer-and-1800m-n3-what-is-108985.html
if-x-and-y-are-positive-integers-and-180x-y-100413.html
if-x-is-a-positive-integer-and-x-2-is-divisible-by-32-then-88388.html
if-5400mn-k-4-where-m-n-and-k-are-positive-integers-109284.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-129929.html



Hi,

How can the part highlighted in bold be concluded fro the question stem "The largest positive integer that must divide n, means for the least value of n"??

In absence of this even 48 looks like a valid answer, as 48^2 is divisible by 72 and 48 is divisible by itself.

Please help!!

Regards,
Sagar
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,078
 [3]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,078
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
itsworththepain
Bunuel
SOLUTION

If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

(A) 6
(B) 12
(C) 24
(D) 36
(E) 48

The largest positive integer that must divide \(n\), means for the least value of \(n\) which satisfies the given statement in the question. The lowest square of an integer, which is multiple of \(72\) is \(144\) --> \(n^2=144=12^2=72*2\) --> \(n_{min}=12\). Largest factor of \(12\) is \(12\).

OR:

Given: \(72k=n^2\), where \(k\) is an integer \(\geq1\) (as \(n\) is positive).

\(72k=n^2\) --> \(n=6\sqrt{2k}\), as \(n\) is an integer \(\sqrt{2k}\), also must be an integer. The lowest value of \(k\), for which \(\sqrt{2k}\) is an integer is when \(k=2\) --> \(\sqrt{2k}=\sqrt{4}=2\) --> \(n=6\sqrt{2k}=6*2=12\)

Answer: B.

Similar questions to practice:

if-n-is-a-positive-integer-and-n-2-is-divisible-by-96-then-127364.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-90523.html
n-is-a-positive-integer-and-k-is-the-product-of-all-integer-104272.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html
if-m-and-n-are-positive-integer-and-1800m-n3-what-is-108985.html
if-x-and-y-are-positive-integers-and-180x-y-100413.html
if-x-is-a-positive-integer-and-x-2-is-divisible-by-32-then-88388.html
if-5400mn-k-4-where-m-n-and-k-are-positive-integers-109284.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-129929.html



Hi,

How can the part highlighted in bold be concluded fro the question stem "The largest positive integer that must divide n, means for the least value of n"??

In absence of this even 48 looks like a valid answer, as 48^2 is divisible by 72 and 48 is divisible by itself.

Please help!!

Regards,
Sagar

We need the largest positive integer that MUST divide n. So, we should find the least value of n for which n^2 is divisible by 72, and if that n is divisible by some number then so will be every other n's (MUST condition will be satisfied). The least positive n for which n^2 is divisible by 72 is 12 (12^2 = 144, which is divisible by 72). So, even if n = 12 it is divisible by 12 but not divisible by 24, 36 or 48.

Follow the links in my previous post for similar questions to understand the concept better.
User avatar
EgmatQuantExpert
User avatar
e-GMAT Representative
Joined: 04 Jan 2015
Last visit: 02 Apr 2024
Posts: 3,663
Own Kudos:
20,162
 [9]
Given Kudos: 165
Expert
Expert reply
Posts: 3,663
Kudos: 20,162
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
In questions like this,

It's a good idea to start with the prime factorized form of n.

We can write \(n = p1^m*p2^n*p3^r\). . . where p1, p2, p3 . . .are prime factors of n and m, n, r are non-negative integers (can be equal to 0)

So, \(n^2 = p1^{2m}*p2^{2n}*p3^{2r}\). . .

Now, \(n^2\) is completely divisible by 72 = \(2^3*3^2\)

This means, \(\frac{(p1^{2m}*p2^{2n}*p3^{2r} . . . )}{(2^3*3^2)}\) is an integer.

What does this tell you?

That p1 = 2 and 2m ≥ 3, that is m ≥ 3/2. But m is an integer. So, minimum possible value of m =2

Also, p2 = 3 and 2n ≥ 2. That is, n ≥ 1. So, minimum possible value of n = 1

Let's now apply this information on the expression for n:

n = \(2^2*3^1\)\(*something. . .\)

From this expression, it's clear that n MUST BE divisible by \(2^2*3^1\) = 12.

Takeaway: If you find yourself getting confused in questions that gives divisibility information about different powers of a number, start by writing a general prime factorized expression for the number raised to power 1. :)

Hope this was useful!

Japinder
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 18 Nov 2025
Posts: 6,835
Own Kudos:
16,349
 [11]
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,835
Kudos: 16,349
 [11]
8
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Bunuel
The Official Guide For GMAT® Quantitative Review, 2ND Edition

If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

(A) 6
(B) 12
(C) 24
(D) 36
(E) 48

CONCEPT: Perfect Squares always have even power of Prime no. in their Prime factorised form.

\(72 = 8*9 = 2^3*3^2\)

Since power of prime numbers must be prime so \(72\)must be multiplied by minimum \(2^1\) to make the result a perfect Square

In that Case \(n^2 = 2^4 * 3^2\)

i.e. \(n = 2^2 * 3 = 12\)

Answer: Option
 1   2   3   
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts