It is currently 16 Jan 2018, 05:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If n is a positive integer and n^2 is divisible by 72, then

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

9 KUDOS received
Intern
Intern
avatar
Joined: 27 Mar 2012
Posts: 6

Kudos [?]: 72 [9], given: 1

If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 31 Mar 2012, 01:36
9
This post received
KUDOS
66
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

59% (00:50) correct 41% (01:06) wrong based on 1373 sessions

HideShow timer Statistics

If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

A. 6
B. 12
C. 24
D. 36
E. 48
[Reveal] Spoiler: OA

Kudos [?]: 72 [9], given: 1

Expert Post
15 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [15], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 31 Mar 2012, 01:47
15
This post received
KUDOS
Expert's post
44
This post was
BOOKMARKED
If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is
A. 6
B. 12
C. 24
D. 36
E. 48

The largest positive integer that must divide \(n\), means for the least value of \(n\) which satisfies the given statement in the question. The lowest square of an integer, which is multiple of \(72\) is \(144\) --> \(n^2=144=12^2=72*2\) --> \(n_{min}=12\). Largest factor of \(12\) is \(12\).

OR:

Given: \(72k=n^2\), where \(k\) is an integer \(\geq1\) (as \(n\) is positive).

\(72k=n^2\) --> \(n=6\sqrt{2k}\), as \(n\) is an integer \(\sqrt{2k}\), also must be an integer. The lowest value of \(k\), for which \(\sqrt{2k}\) is an integer is when \(k=2\) --> \(\sqrt{2k}=\sqrt{4}=2\) --> \(n=6\sqrt{2k}=6*2=12\)

Answer: B.

Similar problem:
division-factor-88388.html#p666722

Hope it's helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [15], given: 12777

Manager
Manager
avatar
Joined: 09 Jul 2010
Posts: 121

Kudos [?]: 23 [0], given: 2

GMAT ToolKit User
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 21 Apr 2012, 13:04
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then
the largest positive integerthat must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.


Please explain.

Thanks

Kudos [?]: 23 [0], given: 2

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [2], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 21 Apr 2012, 13:14
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Merging similar topics.

raviram80 wrote:
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks


The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [2], given: 12777

3 KUDOS received
Manager
Manager
avatar
Joined: 28 Feb 2012
Posts: 115

Kudos [?]: 56 [3], given: 17

Concentration: Strategy, International Business
Schools: INSEAD Jan '13
GPA: 3.9
WE: Marketing (Other)
GMAT ToolKit User
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 14 Aug 2012, 21:50
3
This post received
KUDOS
2
This post was
BOOKMARKED
Normally i divide the number into the primes just to see how many more primes we need to satisfy the condition, so in our case:
n^2/72=n*n/2^3*3^2, in order to have minimum in denominator we should try modify the smallest number. If we have one more 2 then the n*n will perfectly be devisible to 2^4*3^2 from here we see that the largest number is 2*2*3=12
Hope i explained my thought.
_________________

If you found my post useful and/or interesting - you are welcome to give kudos!

Kudos [?]: 56 [3], given: 17

Intern
Intern
avatar
Joined: 15 Apr 2010
Posts: 48

Kudos [?]: 35 [0], given: 11

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 02 Nov 2012, 03:35
Bunuel wrote:
Merging similar topics.

raviram80 wrote:
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks


The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.


I spent a few hours on this one alone and I'm still not clear. I chose 12 at first, but then changed to 48.

I'm not a native speaker, so here is how I interpreted this question: "the largest positive integer that must divide n" = "the largest positive factor of n". Since n is a variable (i.e. n is moving), so is its largest factor. Please correct if I'm wrong here.

I know that if n = 12, n^2 = 144 = 2 * 72 (satisfy the condition). When n = 12, the largest factor of n is n itself, which is 12. Check: 12 is the largest positive number that must divide 12 --> true

However if n = 48, n^2 = 48 * 48 = 32 * 72 (satisfy the condition too). When n = 48, the largest factor of n is n itself, which is 48. Check: 48 is the largest positive number that must divide 48 --> true

So, I also notice that the keyword is "MUST", not "COULD". The question is, why is 48 not "MUST divide 48", but instead only "COULD divide 48"? I'm not clear right here. Why is 12 "MUST divide 12"? What's the difference between them?

Thanks,

Caten

Kudos [?]: 35 [0], given: 11

Expert Post
6 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [6], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 02 Nov 2012, 03:53
6
This post received
KUDOS
Expert's post
catennacio wrote:
Bunuel wrote:
Merging similar topics.

raviram80 wrote:
Hi All

I have a confusion about this question

169. If n is a positive integer and n2 is divisible by 72, then the largest positive integer that must divide n is
(A) 6
(8) 12
(C) 24
(0) 36
(E) 48

If we are looking for largest positive integer that must divide n, why can it not be 48.

because if n2 = 72 * 32 then n will be 48 , so does this not mean n is divisible by 48.

Please explain.

Thanks


The question asks about "the largest positive integer that MUST divide n", not COULD divide n. Since the least value of n for which n^2 is a multiple of 72 is 12 then the largest positive integer that MUST divide n is 12.

Complete solution of this question is given above. Please ask if anything remains unclear.


I spent a few hours on this one alone and I'm still not clear. I chose 12 at first, but then changed to 48.

I'm not a native speaker, so here is how I interpreted this question: "the largest positive integer that must divide n" = "the largest positive factor of n". Since n is a variable (i.e. n is moving), so is its largest factor. Please correct if I'm wrong here.

I know that if n = 12, n^2 = 144 = 2 * 72 (satisfy the condition). When n = 12, the largest factor of n is n itself, which is 12. Check: 12 is the largest positive number that must divide 12 --> true

However if n = 48, n^2 = 48 * 48 = 32 * 72 (satisfy the condition too). When n = 48, the largest factor of n is n itself, which is 48. Check: 48 is the largest positive number that must divide 48 --> true

So, I also notice that the keyword is "MUST", not "COULD". The question is, why is 48 not "MUST divide 48", but instead only "COULD divide 48"? I'm not clear right here. Why is 12 "MUST divide 12"? What's the difference between them?

Thanks,

Caten


Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [6], given: 12777

2 KUDOS received
Manager
Manager
avatar
Joined: 10 Jan 2011
Posts: 232

Kudos [?]: 87 [2], given: 25

Location: India
GMAT Date: 07-16-2012
GPA: 3.4
WE: Consulting (Consulting)
Reviews Badge
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 02 Nov 2012, 04:20
2
This post received
KUDOS
I approach this problem by prime factorisation.
any square must have 2 pairs of prime factors.
prime factorisation of 72 has 2*2, 3*3 and 2. n^2 must have one more 2 as a prime factor. Hence lasrgest number which must devide n is 2*3*2 = 12
_________________

-------Analyze why option A in SC wrong-------

Kudos [?]: 87 [2], given: 25

1 KUDOS received
Intern
Intern
avatar
Joined: 15 Apr 2010
Posts: 48

Kudos [?]: 35 [1], given: 11

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 02 Nov 2012, 07:49
1
This post received
KUDOS
Bunuel wrote:

Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.


Thank you very much Bunuel. Very clear now. Now I understand what "must" means. It means it will be always true regardless of n. As you said (and I chose), when n = 24 or 36 or 48, the answer 48 can divide 48, but cannot divide 12. So the "must" here is not maintained. In this case we have to choose the largest factor of the least possible value of n to ensure that largest factor is also a factor of other values of n. Therefore the least value of n is 12, the largest factor of 12 is also 12. This factor also divides other n values, for all n such that n^2 = 72k.

My mistake was that I didn't understand the "must" wording and didn't check whether my answer 48 can divide ALL possible values of n, including n=12. This is what "must" mean.

Again, thanks so much!

Caten

Kudos [?]: 35 [1], given: 11

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [1], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 02 Nov 2012, 07:53
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
catennacio wrote:
Bunuel wrote:

Only restriction we have on positive integer n is that n^2 is divisible by 72. The least value of n for which n^2 is divisible by 72 is 12, thus n must be divisible by 12 (n is in any case divisible by 12). For all other values of n, for which n^2 is divisible by 72, n will still be divisible by 12. This means that n is always divisible by 12 if n^2 is divisible by 72.

Now, ask yourself: if n=12, is n divisible by 48? No. So, n is not always divisible by 48.

Hope it's clear.


Thank you very much Bunuel. Very clear now. Now I understand what "must" means. It means it will be always true regardless of n. As you said (and I chose), when n = 24 or 36 or 48, the answer 48 can divide 48, but cannot divide 24 and 36. So the "must" here is not maintained. In this case we have to choose the largest factor of the least possible value of n to ensure that largest factor also a factor of other values of n. Therefore the least value of n is 12, the largest factor of 12 is also 12. This factor also divides other n values, for all n such that n^2 = 72k.

My mistake was that I didn't understand the "must" wording and didn't check whether my answer 48 can divide ALL possible values of n, including n=12. This is what "must" mean.

Again, thanks so much!

Caten


More must/could be true questions from our question banks (viewforumtags.php) here: search.php?search_id=tag&tag_id=193

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [1], given: 12777

Manager
Manager
User avatar
B
Joined: 15 Jan 2011
Posts: 108

Kudos [?]: 162 [0], given: 15

CAT Tests
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 13 Aug 2013, 09:32
1
This post was
BOOKMARKED
n^2/72 --> n*n/(2^3*3^2) -->(n/2*3)*(n/2*3)*1/2 --> means that n/6*1/2 --> 12

Kudos [?]: 162 [0], given: 15

Manager
Manager
avatar
Joined: 24 Mar 2013
Posts: 59

Kudos [?]: 6 [0], given: 10

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 07 Mar 2014, 19:56
The explanations above are much clearer to me than the explanation offered in the official Gmat guide;

"Since 72k=(2^3)(3^2)k, then k=2m^2 for some positive integer m in order for 72k to be a perfect square."

Why must k=2m^2?

Kudos [?]: 6 [0], given: 10

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [2], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 08 Mar 2014, 06:08
2
This post received
KUDOS
Expert's post
actionj wrote:
The explanations above are much clearer to me than the explanation offered in the official Gmat guide;

"Since 72k=(2^3)(3^2)k, then k=2m^2 for some positive integer m in order for 72k to be a perfect square."

Why must k=2m^2?


A perfect square has its primes in even powers, thus k must complete odd power of 2 into even, hence 2, and it also can have some other integer in even power, hence m^2.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [2], given: 12777

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43294

Kudos [?]: 139166 [1], given: 12777

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 09 Mar 2014, 02:49
1
This post received
KUDOS
Expert's post
actionj wrote:
Cheers, that helped me nail down the fundamental concept I was missing.


Similar questions to practice:

if-n-is-a-positive-integer-and-n-2-is-divisible-by-96-then-127364.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-90523.html
n-is-a-positive-integer-and-k-is-the-product-of-all-integer-104272.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html
if-m-and-n-are-positive-integer-and-1800m-n3-what-is-108985.html
if-x-and-y-are-positive-integers-and-180x-y-100413.html
if-x-is-a-positive-integer-and-x-2-is-divisible-by-32-then-88388.html
if-5400mn-k-4-where-m-n-and-k-are-positive-integers-109284.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-129929.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139166 [1], given: 12777

Manager
Manager
avatar
Joined: 24 Mar 2013
Posts: 59

Kudos [?]: 6 [0], given: 10

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 09 Mar 2014, 02:55
I see why you have so many kudos.. +1, thanks again. Plenty to practice there.

Kudos [?]: 6 [0], given: 10

Expert Post
e-GMAT Representative
User avatar
S
Joined: 04 Jan 2015
Posts: 786

Kudos [?]: 2317 [0], given: 126

Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 18 May 2015, 04:37
In questions like this,

It's a good idea to start with the prime factorized form of n.

We can write \(n = p1^m*p2^n*p3^r\). . . where p1, p2, p3 . . .are prime factors of n and m, n, r are non-negative integers (can be equal to 0)

So, \(n^2 = p1^{2m}*p2^{2n}*p3^{2r}\). . .

Now, \(n^2\) is completely divisible by 72 = \(2^3*3^2\)

This means, \(\frac{(p1^{2m}*p2^{2n}*p3^{2r} . . . )}{(2^3*3^2)}\) is an integer.

What does this tell you?

That p1 = 2 and 2m ≥ 3, that is m ≥ 3/2. But m is an integer. So, minimum possible value of m =2

Also, p2 = 3 and 2n ≥ 2. That is, n ≥ 1. So, minimum possible value of n = 1

Let's now apply this information on the expression for n:

n = \(2^2*3^1\)\(*something. . .\)

From this expression, it's clear that n MUST BE divisible by \(2^2*3^1\) = 12.

Takeaway: If you find yourself getting confused in questions that gives divisibility information about different powers of a number, start by writing a general prime factorized expression for the number raised to power 1. :)

Hope this was useful!

Japinder
_________________












| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Kudos [?]: 2317 [0], given: 126

1 KUDOS received
Manager
Manager
User avatar
B
Joined: 20 Jan 2017
Posts: 63

Kudos [?]: 10 [1], given: 15

Location: United States (NY)
Schools: CBS '20 (A)
GMAT 1: 750 Q48 V44
GMAT 2: 610 Q34 V41
GPA: 3.92
Reviews Badge
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 25 Jan 2017, 08:27
1
This post received
KUDOS
1) n is squared. This means that it should have two identical sets of prime factors.
2) Since n^2 is divisible by 72, all prime factors of 72 should be prime factors of n^2.
3) The prime factors of 72 are 2*2*3*2*3. To make this product a perfect square we need to add one more 2. Then we get two identical sets of prime factors (2*2*3)=12.
4) n has to be at least 12 in order to satisfy the conditions of the problem. 12 is the largest integer that n MUST be divisible by.

The correct answer is B.

Posted from my mobile device

Kudos [?]: 10 [1], given: 15

Expert Post
1 KUDOS received
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1997

Kudos [?]: 1080 [1], given: 4

Location: United States (CA)
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 09 Feb 2017, 16:24
1
This post received
KUDOS
Expert's post
amitvmane wrote:
If n is a positive integer and n^2 is divisible by 72, then the largest positive integer that must divide n is

A. 6
B. 12
C. 24
D. 36
E. 48


We are given that n^2/72 = integer or (n^2)/(2^3)(3^2) = integer.

However, since n^2 is a perfect square, we need to make 72 or (2^3)(3^2) a perfect square. Since all perfect squares consist of unique primes, each raised to an even exponent, the smallest perfect square that divides into n^2 is (2^4)(3^2) = 144.

Since n^2/144 = integer, then n/12 = integer, and thus the largest positive integer that must divide n is 12.

Answer: B
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1080 [1], given: 4

Senior Manager
Senior Manager
User avatar
S
Joined: 08 Dec 2015
Posts: 315

Kudos [?]: 28 [0], given: 36

GMAT 1: 600 Q44 V27
Reviews Badge
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 11 Feb 2017, 08:12
ScottTargetTestPrep

Thank you for your reply!

But I still dont get why the Q says the largest and not the smallest. 48 divides 12, so why not 48?

Kudos [?]: 28 [0], given: 36

Expert Post
1 KUDOS received
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1997

Kudos [?]: 1080 [1], given: 4

Location: United States (CA)
Re: If n is a positive integer and n^2 is divisible by 72, then [#permalink]

Show Tags

New post 14 Feb 2017, 15:57
1
This post received
KUDOS
Expert's post
iliavko wrote:
ScottTargetTestPrep

Thank you for your reply!

But I still dont get why the Q says the largest and not the smallest. 48 divides 12, so why not 48?


I think you may have misinterpreted the phrase "integer that must divide n." You interpreted it as “the integer must be divisible by n.” By your interpretation, if 12 is divisible by n, 48 is also divisible by n; this would be correct, had the wording of the question been as you interpreted it.

The phrase "integer that must divide n" really means “n must be divisible by that integer.” So if n is divisible by 12 (which means n/12 = integer), it doesn't mean n is divisible by 48 (i.e., it doesn't mean n/48 will be an integer). For example, if n = 12, n is divisible by 12, but n is not divisible by 48.

And thus, since we determined in the original question that n is a multiple of 12, n could be as small as 12, and the largest integer that must divide into 12 is 12. Does that answer your question?
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1080 [1], given: 4

Re: If n is a positive integer and n^2 is divisible by 72, then   [#permalink] 14 Feb 2017, 15:57

Go to page    1   2    Next  [ 24 posts ] 

Display posts from previous: Sort by

If n is a positive integer and n^2 is divisible by 72, then

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.