Join us for MBA Spotlight – The Top 20 MBA Fair      Schedule of Events | Register

 It is currently 05 Jun 2020, 23:59 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If n is a positive integer greater than 6, what is the remai

Author Message
TAGS:

### Hide Tags

Manager  Joined: 15 Aug 2013
Posts: 223
If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

5
1
22 00:00

Difficulty:   75% (hard)

Question Stats: 61% (02:27) correct 39% (02:25) wrong based on 334 sessions

### HideShow timer Statistics

If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3.

(2) n^2 – 1 is even.

Originally posted by russ9 on 18 May 2014, 11:58.
Last edited by Bunuel on 19 May 2014, 02:25, edited 1 time in total.
Edited the question.
Math Expert V
Joined: 02 Sep 2009
Posts: 64314
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

11
1
4
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3 --> (n-1)(n+1) is not divisible by 3 --> neither n-1 not n+1 is divisible by 3. Since from any 3 consecutive integers one is divisible by 3, then n must be divisible by 3. If n is even too (12, 18, ...) then the remainder is 0 but if n is odd (9, 15, ...) then the reminder is 3. Not sufficient.

(2) n^2 – 1 is even --> n^2 = even + 1 = odd --> n=odd. Not sufficient.

(1)+(2) n is odd multiple of 3: 9, 15, 21, ... The remainder when n is divided by 6 is 3. Sufficient.

_________________
##### General Discussion
Intern  Joined: 16 Feb 2014
Posts: 15
Schools: ISB
Re: If n is a positive integer greater than 6, what?  [#permalink]

### Show Tags

How it can be C, because the n value where n^2-1 is not divisible by 6 is 9; and also if we consider n^2-1 is even we can get a lot numbers 48, 120, 80 etc.
Director  Joined: 25 Apr 2012
Posts: 636
Location: India
GPA: 3.21
Re: If n is a positive integer greater than 6, what?  [#permalink]

### Show Tags

1
krishna789 wrote:
How it can be C, because the n value where n^2-1 is not divisible by 6 is 9; and also if we consider n^2-1 is even we can get a lot numbers 48, 120, 80 etc.

Q:If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n2 – 1 is not divisible by 3.

(2) n2 – 1 is even.

Ans is C and here is how

St 1 tells us that n^2-1 is not divisible by 3 and we know n>6 so possible values of n =9,12,15,18......
Now if n =12,18,24... then n/6 gives remainder as 0 but if n=9,15,21 then remainder is 3

So from St1 we see that remainder will follow a pattern of 0,1,0,1....

Not sufficient

from St 2 we we have n^2-1=even or n^2= Even +1 =odd, so we see that n is odd.
Now if n=7 then n/6 gives remainder 1
but if n=9 then remainder is 3
if n=11 then remainder is 5

So St2 is not sufficient alone

Combining we see that n is odd and n>6 so possible value of n satisfying the above conditions are n=9,15,21,27.....so on
Remainder will be 3

Ans is C
_________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”
Intern  Joined: 08 Aug 2011
Posts: 21
Re: If n is a positive integer greater than 6, what?  [#permalink]

### Show Tags

2
russ9 wrote:
If N is a positive integer greater than 6, what is the remainder when N is divided by 6?

(1) N^2 – 1 is not divisible by 3.

(2) N^2 – 1 is even.

N is a positive integer > 6, what is the remainder when N is divided by 6?

(1) N^2 – 1 is not divisible by 3.

--> N^2 - 1 = (N-1)*(N+1) , and this is not divisible by three.

Notice that (N-1)*N*(N+1) is the product of three consecutive positive integers. Such a product will always contain exactly one multiple of 3. If this multiple of three is not (N-1) or (N+1), then the multiple of 3 must be N.

If N = 3*3=9, the remainder when divided by 6 is 3.
If N = 3*4=12, the remainder when divided by 6 is 0.
--> Not sufficient.

(Note: The product of K consecutive positive integers is always divisible by K!)

(2) N^2 – 1 is even

--> N^2 = even + 1 = odd --> N is odd.

If N = 7, the remainder when divided by 6 is 1.
If N = 9, the remainder when divided by 6 is 3.
--> Not sufficient.

(1) and (2)
N is an odd multiple of 3 greater than 6.
--> N = 3*(2k-1) = 6k - 3 for k >1.

Thus, since N is three less than a multiple of six, the remainder is always 3. Sufficient.

Originally posted by Reinfrank2011 on 18 May 2014, 21:40.
Last edited by Reinfrank2011 on 19 May 2014, 14:12, edited 1 time in total.
Manager  Joined: 15 Aug 2013
Posts: 223
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

Bunuel wrote:
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3 --> (n-1)(n+1) is not divisible by 3 --> neither n-1 not n+1 is divisible by 3. Since from any 3 consecutive integers one is divisible by 3, then n must be divisible by 3. If n is even too (12, 18, ...) then the remainder is 0 but if n is odd (9, 15, ...) then the reminder is 3. Not sufficient.

(2) n^2 – 1 is even --> n^2 = even + 1 = odd --> n=odd. Not sufficient.

(1)+(2) n is odd multiple of 3: 9, 15, 21, ... The remainder when n is divided by 6 is 3. Sufficient.

Thanks for the explanation. I can definitely follow what you have outlined above but I wouldn't have been able to derive it on my own.

Two questions:
1) Is it better to plug in numbers for these type of problems or work through the theory?
2) How do I get better at these specific types of problems? Is it just practice and if so, can you suggest similar problems please?

Thanks!
Math Expert V
Joined: 02 Sep 2009
Posts: 64314
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

russ9 wrote:
Bunuel wrote:
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3 --> (n-1)(n+1) is not divisible by 3 --> neither n-1 not n+1 is divisible by 3. Since from any 3 consecutive integers one is divisible by 3, then n must be divisible by 3. If n is even too (12, 18, ...) then the remainder is 0 but if n is odd (9, 15, ...) then the reminder is 3. Not sufficient.

(2) n^2 – 1 is even --> n^2 = even + 1 = odd --> n=odd. Not sufficient.

(1)+(2) n is odd multiple of 3: 9, 15, 21, ... The remainder when n is divided by 6 is 3. Sufficient.

Thanks for the explanation. I can definitely follow what you have outlined above but I wouldn't have been able to derive it on my own.

Two questions:
1) Is it better to plug in numbers for these type of problems or work through the theory?
2) How do I get better at these specific types of problems? Is it just practice and if so, can you suggest similar problems please?

Thanks!

1. Questions on remainders are good for plug-in, but not all of them. It depends on a question and your skills/preferences what approach to choose.

2. By studying theory and practicing:
Theory on remainders problems: remainders-144665.html

Units digits, exponents, remainders problems: new-units-digits-exponents-remainders-problems-168569.html

All DS remainders problems to practice: search.php?search_id=tag&tag_id=198
All PS remainders problems to practice: search.php?search_id=tag&tag_id=199

Hope this helps.
_________________
Manager  S
Joined: 04 Oct 2015
Posts: 225
Location: Viet Nam
Concentration: Finance, Economics
GMAT 1: 730 Q51 V36
GPA: 3.56
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

Here is my take!

Statement 1: n^2 - 1 is not divisible by 3 --> (n-1)(n+1) is not divisible by 3 ---> n is divisible by 3 --> insuff

Statement 2: n^2 - 1 is odd --> (n-1)(n+1) is odd ---> n -1 is even ---> n is odd ---> insuff

Statement 1+2: n is divisible by 3 ---> n = 3a

n is even ---> n = 2b +1

So, n = 6c +3 ---> remainder when n is divided by 6 is 3

Hence, C!
_________________
Do not pray for an easy life, pray for the strength to endure a difficult one - Bruce Lee
Current Student B
Joined: 23 Dec 2013
Posts: 132
Location: United States (CA)
GMAT 1: 710 Q45 V41
GMAT 2: 760 Q49 V44
GPA: 3.76
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

russ9 wrote:
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3.

(2) n^2 – 1 is even.

Goal: We need to know the remainder when n is divided by 6.

Statement 1: (N^2-1)/3 =int. So (n+1)(n-1)/3 is not an integer. Thus, n must be a multiple of three because every three consecutive integers has at least one multiple of three within it. Not sufficient because all it tells us is that n is a multiple of 3, so its remainder when divided by 6 has multiple potential values.

Statement 2: N^2 - 1 is even. Hence (n+1)*(n-1) is even, so n must be odd. Not sufficient because some odd numbers have different remainders when divided by 6.

Combined: We know that N is an integer greater than 6 that is odd and a multiple of 3. Start testing cases: n=9 (r=3); n=15 (r=3); and so on. Sufficient.
Director  V
Joined: 25 Dec 2018
Posts: 621
Location: India
Concentration: General Management, Finance
GMAT Date: 02-18-2019
GPA: 3.4
WE: Engineering (Consulting)
If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

russ9 wrote:
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3.

(2) n^2 – 1 is even.

The problem can be solved algebraically or using smart numbers (testing cases). Both methods are shown below.

(1) NOT SUFFICIENT:
Algebra
The expression n^$$2$$ – 1 = (n – 1)(n + 1). Together with n, the three expressions represent three consecutive integers: n – 1, n, n + 1. Statement 2 indicates that the product (n – 1)(n + 1) is not divisible by the prime number 3; therefore, neither n – 1 nor n + 1 is a multiple of 3.

Since every third integer is a multiple of 3, it follows that n must be a multiple of 3. This fact alone is not sufficient, though, since different multiples of 3 can give different remainders upon division by 6. For example, 9/6 gives a remainder of 3, and 12/6 gives a remainder of 0.

Testing Cases
Find values of n > 6 that satisfy statement 1.
The value n = 7 does not satisfy the statement, since 72 – 1 = 48 is divisible by 3.
The value n = 8 does not satisfy the statement, since 82 – 1 = 63 is divisible by 3.
The value n = 9 satisfies the statement, since 92 – 1 = 80 is not divisible by 3. The remainder of 9/6 is 3.
The value n = 10 does not satisfy the statement, since 102 – 1 = 99 is divisible by 3.
The value n = 11 does not satisfy the statement, since 112 – 1 = 120 is divisible by 3.
The value n = 12 satisfies the statement, since 122 – 1 = 143 is not divisible by 3. The remainder of 12/6 is 0.

At least two different remainders are possible, so the statement is insufficient.

(2) NOT SUFFICIENT:
Algebra
If n$$2$$ – 1 is even, then $$n2$$ must be odd, so n itself is odd. This fact alone is not sufficient, though, since different odd numbers can give different remainders upon division by 6. For example, 7/6 gives a remainder of 1, and 9/6 gives a remainder of 3.

Testing Cases
Find values of n > 6 that satisfy the statement.
The value n = 7 satisfies the statement, since 72 – 1 = 48 is even. The remainder of 7/6 is 1.
The value n = 8 does not satisfy the statement, since 82 – 1 = 63 is not even.
The value n = 9 satisfies the statement, since 92 – 1 = 80 is even. The remainder of 9/6 is 3.
At least two different remainders are possible, so the statement is insufficient.

(1) AND (2) SUFFICIENT: Statement (1) indicates that n is a multiple of 3 and statement (2) indicates that n is odd. From this point, you can either use algebra or test numbers.
Algebra
According to the two statements, n must be 3 times some odd integer, so it can be written as n = 3(2k + 1), where k is an integer. Distributing gives n = 6k + 3, which is 3 more than a multiple of 6. Therefore, the remainder upon dividing n by six must be 3.

Testing Cases
Test numbers that are multiples of 3, odd, and greater than 6:
If n = 9, then 9 / 6 = 1 remainder 3.
If n = 15, then 15 / 6 = 2 remainder 3.
If n = 21, then 21 / 6 = 3 remainder 3
Director  V
Joined: 25 Dec 2018
Posts: 621
Location: India
Concentration: General Management, Finance
GMAT Date: 02-18-2019
GPA: 3.4
WE: Engineering (Consulting)
Re: If n is a positive integer greater than 6, what is the remai  [#permalink]

### Show Tags

russ9 wrote:
If n is a positive integer greater than 6, what is the remainder when n is divided by 6?

(1) n^2 – 1 is not divisible by 3.

(2) n^2 – 1 is even.

The problem can be solved algebraically or using smart numbers (testing cases). Both methods are shown below.

(1) NOT SUFFICIENT:
Algebra
The expression n2 – 1 = (n – 1)(n + 1). Together with n, the three expressions represent three consecutive integers: n – 1, n, n + 1. Statement 2 indicates that the product (n – 1)(n + 1) is not divisible by the prime number 3; therefore, neither n – 1 nor n + 1 is a multiple of 3.

Since every third integer is a multiple of 3, it follows that n must be a multiple of 3. This fact alone is not sufficient, though, since different multiples of 3 can give different remainders upon division by 6. For example, 9/6 gives a remainder of 3, and 12/6 gives a remainder of 0.

Testing Cases
Find values of n > 6 that satisfy statement 1.
The value n = 7 does not satisfy the statement, since 72 – 1 = 48 is divisible by 3.
The value n = 8 does not satisfy the statement, since 82 – 1 = 63 is divisible by 3.
The value n = 9 satisfies the statement, since 92 – 1 = 80 is not divisible by 3. The remainder of 9/6 is 3.
The value n = 10 does not satisfy the statement, since 102 – 1 = 99 is divisible by 3.
The value n = 11 does not satisfy the statement, since 112 – 1 = 120 is divisible by 3.
The value n = 12 satisfies the statement, since 122 – 1 = 143 is not divisible by 3. The remainder of 12/6 is 0.

At least two different remainders are possible, so the statement is insufficient.

(2) NOT SUFFICIENT:
Algebra
If n2 – 1 is even, then n2 must be odd, so n itself is odd. This fact alone is not sufficient, though, since different odd numbers can give different remainders upon division by 6. For example, 7/6 gives a remainder of 1, and 9/6 gives a remainder of 3.

Testing Cases
Find values of n > 6 that satisfy the statement.
The value n = 7 satisfies the statement, since 72 – 1 = 48 is even. The remainder of 7/6 is 1.
The value n = 8 does not satisfy the statement, since 82 – 1 = 63 is not even.
The value n = 9 satisfies the statement, since 92 – 1 = 80 is even. The remainder of 9/6 is 3.
At least two different remainders are possible, so the statement is insufficient.

(1) AND (2) SUFFICIENT: Statement (1) indicates that n is a multiple of 3 and statement (2) indicates that n is odd. From this point, you can either use algebra or test numbers.
Algebra
According to the two statements, n must be 3 times some odd integer, so it can be written as n = 3(2k + 1), where k is an integer. Distributing gives n = 6k + 3, which is 3 more than a multiple of 6. Therefore, the remainder upon dividing n by six must be 3.

Testing Cases
Test numbers that are multiples of 3, odd, and greater than 6:
If n = 9, then 9 / 6 = 1 remainder 3.
If n = 15, then 15 / 6 = 2 remainder 3.
If n = 21, then 21 / 6 = 3 remainder 3.

Will this always return a remainder of 3? Yes! An odd multiple of 3 will always have a remainder when divided by 6 (because 6 is even). Further, an even multiple of 3 will always have a remainder of zero (because an even multiple of 3 is divisible by both 2 and 3). Therefore, the odd multiple of 3, which is always 3 more than an even multiple of 3, will always have a remainder of 3. Re: If n is a positive integer greater than 6, what is the remai   [#permalink] 01 Feb 2020, 22:03

# If n is a positive integer greater than 6, what is the remai  