Last visit was: 19 Nov 2025, 13:30 It is currently 19 Nov 2025, 13:30
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
sparky
Joined: 18 Apr 2005
Last visit: 30 Jul 2005
Posts: 321
Own Kudos:
Location: Canuckland
Posts: 321
Kudos: 102
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
cloudz9
Joined: 17 May 2005
Last visit: 12 Jun 2007
Posts: 130
Own Kudos:
Location: Auckland, New Zealand
Posts: 130
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Vithal
Joined: 01 Feb 2003
Last visit: 02 Jan 2020
Posts: 406
Own Kudos:
Location: Hyderabad
Posts: 406
Kudos: 748
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
cloudz9
Joined: 17 May 2005
Last visit: 12 Jun 2007
Posts: 130
Own Kudos:
Location: Auckland, New Zealand
Posts: 130
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
yeah true sorry
made a stupid mistake

agree with C then
User avatar
HIMALAYA
Joined: 05 Apr 2005
Last visit: 09 Aug 2011
Posts: 796
Own Kudos:
Posts: 796
Kudos: 269
Kudos
Add Kudos
Bookmarks
Bookmark this Post
yah, agree with C. if n <3, second term is larger. if n>2, the first term is larger.

togather, n >2. so it is sufficient.

sparky nice problem..............
User avatar
FN
User avatar
Current Student
Joined: 28 Dec 2004
Last visit: 07 May 2012
Posts: 1,576
Own Kudos:
Given Kudos: 2
Location: New York City
Concentration: Social Enterprise
Schools:Wharton'11 HBS'12
Posts: 1,576
Kudos: 675
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How is it C! I am coming up with E

we need to know that if N is positive, greater than 2.....

I know it is positive from both statements, but dont know if it is greater than 2?
User avatar
rthothad
Joined: 03 Nov 2004
Last visit: 14 Feb 2009
Posts: 315
Own Kudos:
Posts: 315
Kudos: 111
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I will go with C too
The equation reduces to (n-1)![n(n+1) -1] > n(n+1)
From statement 1: n can be 1, 4, 9,...
when n is 1: (n-1)![n(n+1) -1] is not > than n(n+1)
when n is 4: (n-1)![n(n+1) -1] is > than n(n+1)
when n is 9: (n-1)![n(n+1) -1] is > than n(n+1)
so statement 1 is not sufficient

From statement 2: n can be any even number such as 2, 4, 6, 8....
when n is 2: (n-1)![n(n+1) -1] is not > than n(n+1)
when n is 4: (n-1)![n(n+1) -1] is > than n(n+1)
so statement 2 is not sufficient

But both put together: n can be 4, 16, .....
As shown above the condition is satisfied for any number greater than 2
Hence C
User avatar
AJB77
Joined: 30 May 2005
Last visit: 23 Sep 2008
Posts: 236
Own Kudos:
Posts: 236
Kudos: 51
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The two values can be equal, or one can be greater than the other.

For n=1, the values are equal

For n=2, LHS < RHS

For n > 2 LHS < RHS

So we need to find if n=1 or n=2 or n > 2

I alone gives us not enough information. n could be 1,4,9 etc.

II alone gives us not enough information n could be 2,4,6 etc.

I&II together say that n could be 4,16,36 etc. which is sufficient to determine that LHS < RHS

So I'll go for C
User avatar
tarungmat
Joined: 30 May 2005
Last visit: 05 Aug 2005
Posts: 14
Own Kudos:
Posts: 14
Kudos: 21
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I will pick B.

Statement 1, it repets nothing but the original condition that n is a positive integer. It behaves differently for 1 and any higher positive integer. Hence Insufficient. Hence rule out option D as well.

Statement 2, says n is even. substraction operation on two positive integer ( Large positive integer- small positive integer) is always greater than division operation on of the same two numbers ( large positive number/small positive number). Hence B is sufficient.

So answer is B. No need to look at C and E.
User avatar
HowManyToGo
Joined: 17 Apr 2005
Last visit: 14 Sep 2015
Posts: 193
Own Kudos:
Location: India
Posts: 193
Kudos: 41
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sparky
If n is a positive integer, is (n+1)! - (n-1)! greater than (n+1)!/(n-1)! ?
1) Square root of n is a positive integer
2) n is divisible by 2


I think it is C.

The stem reduces to (n-1)! [ n^2 + n - 1 ] > [ n^2 + n ] ?

We need to know that if (n-1)! = 1 then it is NO , but if (n-1) ! > 1 then YES.

Since the least n which is a sqaure of a number and a multiple of 2 is 4. (n-1)! > 1 ,hece the aswer is YES always.

HMTG.
User avatar
tarungmat
Joined: 30 May 2005
Last visit: 05 Aug 2005
Posts: 14
Own Kudos:
Posts: 14
Kudos: 21
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
tarungmat wrote:

substraction operation on two positive integer ( Large positive integer- small positive integer) is always greater than division operation on of the same two numbers ( large positive number/small positive number).


3 - 2 is not greater than 3 /2



Clarification: I meant in question's context (with factorial ). we will never have a situation 3-2 and 3/2 according to statement 2.
Please let me know why not B is correct as per my logic.
avatar
HongHu
Joined: 03 Jan 2005
Last visit: 25 Apr 2011
Posts: 966
Own Kudos:
Posts: 966
Kudos: 796
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sparky
If n is a positive integer, is (n+1)! - (n-1)! greater than (n+1)!/(n-1)! ?
1) Square root of n is a positive integer
2) n is divisible by 2


(n+1)! - (n-1)!=(n-1)!*n*(n+1)-(n-1)!
(n+1)!/(n-1)! =n*(n+1)
(n+1)! - (n-1)! - (n+1)!/(n-1)! = (n-1)!*[n(n+1)-1]-n(n+1)

When n<=2, (n-1)!<=1
(n-1)!*[n(n+1)-1]-n(n+1)<=n(n+1)-1-n(n+1)=-1<0

When n>=3, (n-1)!>=2
(n-1)!*[n(n+1)-1]-n(n+1)>=2n(n+1)-1-n(n+1)=n(n+1)-1>0

(1) n is square of an integer, n could be 1 or 4 or greater, insufficient
(2) n is even, n could be 2 or 4 or greater, insufficient
Combined, n could only be 4 or greater, sufficient. (It's always >0 when n>=3)

(C)
User avatar
Ozmba
Joined: 14 Feb 2005
Last visit: 27 Aug 2013
Posts: 953
Own Kudos:
Location: New York
Posts: 953
Kudos: 30
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
Square root of n is a positive integer
n can be 1 or 2 or any number greater than 2


How can N be 2..N can be 1or 4 or 9
Sq root of 2 is 1.41414 some thing which is not a positive integer

correct me if i am wrong...

Cheers



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Data Sufficiency (DS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
105390 posts
GMAT Tutor
1924 posts