Last visit was: 20 Nov 2025, 04:24 It is currently 20 Nov 2025, 04:24
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
DSGB
Joined: 06 Sep 2010
Last visit: 04 May 2014
Posts: 16
Own Kudos:
818
 [108]
Given Kudos: 6
Schools:HBS
WE 1: Management Consulting- 2 years
WE 2: Private Equity- 2 years
Posts: 16
Kudos: 818
 [108]
5
Kudos
Add Kudos
102
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
 [47]
28
Kudos
Add Kudos
19
Bookmarks
Bookmark this Post
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 20 Nov 2025
Posts: 21,719
Own Kudos:
27,002
 [9]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,719
Kudos: 27,002
 [9]
3
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,359
 [5]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,359
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
DSGB
In N is a positive integer less than 200, and 14N/60 is an integer, then N has how many different positive prime factors?

A. 2
B. 3
C. 5
D. 6
E. 8

Let's choose a nice value of N that satisfies the given information.

GIVEN: 14N/60 is an integer
Prime factorize the numerator and denominator to get: (7)(2)(N)/(2)(2)(3)(5) is an integer
Simplify: (7)(N)/(2)(3)(5) is an integer
Notice that, when N = 30 (aka the product of 2, 3, and 5), then (7)(N)/(2)(3)(5) = (7)(2)(3)(5)/(2)(3)(5) = 7, which IS an integer
So, N = 30 satisfies the given information.

N has how many different positive prime factors?
30 = (2)(3)(5)
So, N has 3 different positive prime factors (2, 3 and 5)

Answer: B

RELATED VIDEO
General Discussion
User avatar
dharani1234
Joined: 24 Aug 2010
Last visit: 27 Sep 2010
Posts: 8
Given Kudos: 1
Posts: 8
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
"n" has to be multiple of 60 if 14n/60 has to be an integer. The multiples of 60 < 200 are 60,120,180.

The prime factors of 60 are 2,3,5 . It would be the same with 120 and 180.
The number of prime factors are 3. Hence B.

Pls correct me if my explanation is wrong.
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
3,191
 [1]
Given Kudos: 25
Location: London
Products:
Posts: 609
Kudos: 3,191
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dharani1234
"n" has to be multiple of 60 if 14n/60 has to be an integer. The multiples of 60 < 200 are 60,120,180.

The prime factors of 60 are 2,3,5 . It would be the same with 120 and 180.
The number of prime factors are 3. Hence B.

Pls correct me if my explanation is wrong.

For 14n/60 to be an integer, n only needs to be a multiple of 30.
But the same logic holds even in that case.
As a multiple of 30, it already has 2,3,5 as factors
For 7 to be a factor (next smallest prime), n would need to be 210 which is not possible
Hence the answer is 3.
User avatar
ChrisLele
User avatar
Magoosh GMAT Instructor
Joined: 28 Nov 2011
Last visit: 27 Jul 2020
Posts: 295
Own Kudos:
4,793
 [6]
Given Kudos: 2
Expert
Expert reply
Posts: 295
Kudos: 4,793
 [6]
6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The lowest prime number, 2, is also the only even prime number. 2, 3, 5, 7, 11…

Every number is made up of at least one prime factor, except for the number 1.

Every number that is not a prime can be broken into prime factors.

Of course this is very basic, but it is important to keep in mind when factoring larger numbers. For instance if we take the number 60 we can see that it is comprised of the factors 4 x 3 x 5. Notice that 3 and 5 are both primes, however 4 is not. A number that is not a prime can always be broken down into more than one prime number, whether those number or numbers are distinct. Therefore 4 can be broken down to 2 and 2.

When taking apart larger numbers sometimes a factoring tree can be helpful. (The U.S. emphasizes this skill and thus it comes naturally for those schooled in the U.S. ). With a large number sometimes the easiest way to approach it is by dividing by 2 if it is even, and if odd, knowing the divisibility rules for 3, 5, etc.

Let’s take a random number, say 136. We can start dividing by 2 as follows: 136/2 = 68, 68/2 = 34, 34/2 = 17. Now we have the prime factors. Three ‘2s’ and a ’17.’ Sometimes a question, such as the question in the thread, will ask for distinct or different primes. In the case of 136, the distinct primes will be 2 and 17.

This of course is really high-level and unless you are at the 200-300 GMAT level you would never such a question. Nonetheless, these fundamentals apply even to difficult prime factorization problems.

So back to the question at hand:

14n/60, can be reduced to 7n/30. Because 7n/30 has to be an integer, n has to be a multiple of 30. The prime factors of 30 are 2, 3, and 5.

The next important part to the question is “different positive factors.” So if we multiply the prime factors 2, 3, 5 times 30, we do not change the number of different prime factors. But as soon as we multiply n times the next highest prime factor, 7, we go over 200: n = 30x7 = 210. Therefore n contains only three prime factors: 2, 3, and 5.

Hope that helped!
User avatar
shinbhu
Joined: 29 Jul 2011
Last visit: 14 Oct 2013
Posts: 51
Own Kudos:
174
 [2]
Given Kudos: 6
Location: United States
Posts: 51
Kudos: 174
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
14n/60, lets factorize this as 2x7xn / 2x2x3x5 -> 7xn / 2x3x5. Therefore, n has 2, 3, 5 for this to be an integer. That is n needs to be a factor of 30.

3 prime factors, B.
avatar
subhajeet
Joined: 12 Jun 2010
Last visit: 11 Feb 2013
Posts: 77
Own Kudos:
Given Kudos: 1
Status:MBA Aspirant
Location: India
Concentration: Finance, International Business
WE:Information Technology (Finance: Investment Banking)
Posts: 77
Kudos: 255
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Impenetrable
Hi guys,
I never really had to deal with prime factors (they don't really matter in the German school system) and that's why I often struggle with questions.

In n is a positive integer smaller than 200 and (14n)/60 is an integer, then n has how many different positive prime factors?

2
3
5
6
8


Can you please explain your answer and maybe give me some tipps for those kind of questions?

Thanks!
Here first we further break down the no 14n/60 to 7n/30

now 30 = 2*3*5

so to get an integer the numerator must be a multiple of 2*3*5
so the smallest number which satisfies this condition is 30
thus we have 3 prime numbers here for n i.e 2,3,5

so ans is B
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Impenetrable
Hi guys,
I never really had to deal with prime factors (they don't really matter in the German school system) and that's why I often struggle with questions.

In n is a positive integer smaller than 200 and (14n)/60 is an integer, then n has how many different positive prime factors?

2
3
5
6
8


Can you please explain your answer and maybe give me some tipps for those kind of questions?

Thanks!

Check out the blog posts on the link given in my signature.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,598
Own Kudos:
Posts: 38,598
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105411 posts
Tuck School Moderator
805 posts