Last visit was: 19 Nov 2025, 07:44 It is currently 19 Nov 2025, 07:44
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
newgmater
Joined: 29 Aug 2005
Last visit: 17 Apr 2007
Posts: 3
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
BG
Joined: 13 Nov 2003
Last visit: 29 Sep 2020
Posts: 352
Own Kudos:
Location: BULGARIA
Concentration: INSURANCE, RISK MANAGEMENT
Posts: 352
Kudos: 210
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
B

St1: Clearly INSUFF
St2:
If p-q = 10
pq-(p+q) can be written as q^2+8q-10
or (q^2 - 1) + (8q-9)
8q-9 will give a remainder of 3 when divided by 4
now lets see q^2 - 1
q^2 - 1 = (q-1) (q+1)
since q is odd both (q-1) and (q+1) are divisible by 2 hence it is divisible by 4.
Final remainder = 3: SUFF
avatar
newgmater
Joined: 29 Aug 2005
Last visit: 17 Apr 2007
Posts: 3
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ps_dahiya. I am missing something. Could you please explain how you are writing pq - (p+q) = q^2+8q-10 (provided p-q=10)

Thank you.
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
newgmater
ps_dahiya. I am missing something. Could you please explain how you are writing pq - (p+q) = q^2+8q-10 (provided p-q=10)

Thank you.

n = pq-(p+q)
substitute p= q+10 in above equation and you get q^2+8q-10

hope this helps...
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ps_dahiya
B

St1: Clearly INSUFF
St2:
If p-q = 10
pq-(p+q) can be written as q^2+8q-10
or (q^2 - 1) + (8q-9)
8q-9 will give a remainder of 3 when divided by 4
now lets see q^2 - 1
q^2 - 1 = (q-1) (q+1)
since q is odd both (q-1) and (q+1) are divisible by 2 hence it is divisible by 4.
Final remainder = 3: SUFF


Why is (1) clearly insufficient? Shouldn't you know me better by now? :wink:
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
ps_dahiya
B

St1: Clearly INSUFF
St2:
If p-q = 10
pq-(p+q) can be written as q^2+8q-10
or (q^2 - 1) + (8q-9)
8q-9 will give a remainder of 3 when divided by 4
now lets see q^2 - 1
q^2 - 1 = (q-1) (q+1)
since q is odd both (q-1) and (q+1) are divisible by 2 hence it is divisible by 4.
Final remainder = 3: SUFF

Why is (1) clearly insufficient? Shouldn't you know me better by now? :wink:


Oops... :wall
Answer should be D.
St1:
p = 10x +1
q = 10y+1
where x and y are positive integers

Now pq-(p+q) can be written as
(10x+1) (10y+1) - 10x-1-10y-1
100xy +10x+10y +1 - 10x-1-10y-1
100xy - 1 so the remainder will always be 3: SUFF

A little out of practice...
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Very nice! Also note that for prime numbers p and q, n=pq-p-q=(p-1)(q-1)-1
avatar
jaspetrovic
Joined: 10 Mar 2007
Last visit: 28 Jun 2007
Posts: 2
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
My first post. :-D

Sorry, how did you get the reminder 3?

Thanx
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jaspetrovic
My first post. :-D

Sorry, how did you get the reminder 3?

Thanx

If something is divisible by 4 and then you subtract 1 from that then we need to subtract 3 more from that to again make it divisible by 4. Hence remainder = 3

Same way if something is divisible by 4 and then you subtract 9 from that then we need to subtract 3 more from that to again make it divisible by 4. Hence remainder = 3



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Data Sufficiency (DS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
105389 posts
GMAT Tutor
1924 posts