GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 16 Nov 2019, 16:28 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If p is a natural number and p! ends with y trailing zeros post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
Manager  Joined: 08 Oct 2010
Posts: 179
Location: Uzbekistan
Schools: Johnson, Fuqua, Simon, Mendoza
WE 3: 10
If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

7
81 00:00

Difficulty:   65% (hard)

Question Stats: 55% (01:51) correct 45% (01:54) wrong based on 1132 sessions

### HideShow timer Statistics

If p is a natural number and p! ends with y trailing zeros, then the number of zeros that (5p)! ends with will be

a) (p+y) trailing zeros
b) (5p+y) trailing zeros
c) (5p+5y) trailing zeros
d) (p+5y) trailing zeros
e) none of them above

Can someone help me how to solve this question? I think, there must be more than one solution method.
Math Expert V
Joined: 02 Sep 2009
Posts: 59086
Re: trailing zeros question (logical approach needed)  [#permalink]

### Show Tags

37
30
feruz77 wrote:
If p is a natural number and p! ends with y trailing zeros, then the number of zeros that (5p)! ends with will be

a) (p+y) trailing zeros
b) (5p+y) trailing zeros
c) (5p+5y) trailing zeros
d) (p+5y) trailing zeros
e) none of them above

Can someone help me how to solve this question? I think, there must be more than one solution method.

Given: $$p!$$ has $$y$$ trailing zeros: $$\frac{p}{5}+\frac{p}{5^2}+\frac{p}{5^3}+...=y$$ (check for theory on this topic: everything-about-factorials-on-the-gmat-85592.html) --> now, # of trailing zeros for $$(5p)!$$ will be $$\frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+...=p+(\frac{p}{5}+\frac{p}{5^2}+...)=p+y$$.

_________________
Manager  Joined: 08 Oct 2010
Posts: 179
Location: Uzbekistan
Schools: Johnson, Fuqua, Simon, Mendoza
WE 3: 10
Re: trailing zeros question (logical approach needed)  [#permalink]

### Show Tags

It is very logical and simple approach.
Excellent, Bunuel!

It seems to me there is no alternative solution method. If there is one I would appreciate your contributions. Thanks.
Intern  Joined: 09 Mar 2011
Posts: 1
Re: trailing zeros question (logical approach needed)  [#permalink]

### Show Tags

7
1
feruz77 wrote:
It is very logical and simple approach.
Excellent, Bunuel!

It seems to me there is no alternative solution method. If there is one I would appreciate your contributions. Thanks.

I solved it this way:

Since the p! has trailing zeros, Let's assume p=10

10! will have 2 trailing 0s (by the method provided by Bunuel)
p = 10 y = 2
5p! i.e 50! will have 12 trailing 0s = 10 + 2 = p + y
Director  Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 833
Re: trailing zeros question (logical approach needed)  [#permalink]

### Show Tags

1
1
for p = 10 trailing 0's =
10/5 = 2

for 5p,
50/5 = 10, 50/25 = 2 hence total is 12
Similarly,
for p = 20 trailing 0's = 20/5 = 4
for 5p, trailing 0's = 50/5 = 10, 50/25 = 2 hence total is 10 + 2 = 12
thus we observe,
number of 0's = p + y
example p = 20, y = 4 giving 24.

Hence A.
Manager  Joined: 25 Jun 2012
Posts: 61
Location: India
WE: General Management (Energy and Utilities)
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

suppose p=6
I am taking 6 because it will have 5 & 2 both to become trailing zeroes.

now 6! has 1 trailing zero.

=6/5 = 1 =y

so 5p = 5*6 = 30

new number is 30!.
Trailing zeroes in (5p)! = 30/5 + 30/25 = 6+1 = 7
now here we get 7=6+1=p+y

Intern  Joined: 29 Sep 2012
Posts: 7
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

1
Hi Bunuel,

I'm trying to understand the explanation here and am unable to understand how we got the last step:

now, # of trailing zeros for (5p)! will be \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+...=p+(\frac{p}{5}+\frac{p}{5^2}+...)=p+y.

I understand that the # of trailing zeros for (5p)! will be \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+...

But how is this equal to p+(\frac{p}{5}+\frac{p}{5^2}+...)=p+y?

Infact when I solve \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+... I factor out 5 and get 5(\frac{p}{5}+\frac{p}{5^2}+\frac{p}{5^3}+...)= 5y

This might be a silly question and I'm definitely missing something out here... but can't figure out where I'm going wrong.

Kindly help me out.

Thanks.

P.S: This is the first time I'm posting on this forum... Not sure If I've done it right. Please let me know if anything needs to be changed.
SVP  Joined: 06 Sep 2013
Posts: 1553
Concentration: Finance
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

1
feruz77 wrote:
If p is a natural number and p! ends with y trailing zeros, then the number of zeros that (5p)! ends with will be

a) (p+y) trailing zeros
b) (5p+y) trailing zeros
c) (5p+5y) trailing zeros
d) (p+5y) trailing zeros
e) none of them above

Can someone help me how to solve this question? I think, there must be more than one solution method.

...Or use smart numbers

p= 5! we have 1 trailing zero

5*5! = 25! we have 6 trailing zeroes

Since p = 5 and 'y' = 1

The only answer choice that will satisfy is A

Hope it helps
Cheers!
J Intern  Joined: 10 Oct 2013
Posts: 1
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

Chandni170 wrote:
Hi Bunuel,

I'm trying to understand the explanation here and am unable to understand how we got the last step:

now, # of trailing zeros for (5p)! will be \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+...=p+(\frac{p}{5}+\frac{p}{5^2}+...)=p+y.

I understand that the # of trailing zeros for (5p)! will be \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+...

But how is this equal to p+(\frac{p}{5}+\frac{p}{5^2}+...)=p+y?

Infact when I solve \frac{5p}{5}+\frac{5p}{5^2}+\frac{5p}{5^3}+... I factor out 5 and get 5(\frac{p}{5}+\frac{p}{5^2}+\frac{p}{5^3}+...)= 5y

This might be a silly question and I'm definitely missing something out here... but can't figure out where I'm going wrong.

Kindly help me out.

Thanks.

P.S: This is the first time I'm posting on this forum... Not sure If I've done it right. Please let me know if anything needs to be changed.

Chandni170 . you have a problem with your last denominator....
- assume the last denominator for the P! division is 5^n .
- then the last denominator of (5P)! is not 5^n but 5^(n+1) .
now if you factor out 5 you will end up with 5 *(y+P/5^(n+1)) and not 5*y . Hope it helps...
Manager  Joined: 04 Jan 2014
Posts: 115
GMAT 1: 660 Q48 V32 GMAT 2: 630 Q48 V28 GMAT 3: 680 Q48 V35 Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

Let p = 1. p! = 1! = 1, which means y= 0

(5p)! = 5! = 120, trailing zeros = 1

1 = 1 + 0 = p + y

Director  Joined: 03 Aug 2012
Posts: 656
Concentration: General Management, General Management
GMAT 1: 630 Q47 V29 GMAT 2: 680 Q50 V32 GPA: 3.7
WE: Information Technology (Investment Banking)
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

p=5
p!= 120 has one zero

So, p=5 then y=1

Then

5p! = 25!

Counting zeros in 25!

5*2 =10
10
15*6 = 90
20
24*5=120
25*4=100

So 25!= 5p! has six zeros

Number of zeros in 5p! = 6 = 5 + 1 = p +y
Non-Human User Joined: 09 Sep 2013
Posts: 13592
Re: If p is a natural number and p! ends with y trailing zeros  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: If p is a natural number and p! ends with y trailing zeros   [#permalink] 20 Aug 2019, 23:31
Display posts from previous: Sort by

# If p is a natural number and p! ends with y trailing zeros post reply Question banks Downloads My Bookmarks Reviews Important topics  