Stiv wrote:
If set S consists of the numbers 1, 5, -2, 8, and n, is 0 < n < 7 ?
(1) The median of the numbers in S is less than 5.
(2) The median of the numbers in S is greater than 1.
\(S = \left\{ { - 2,1,5,8} \right\} \cup \left\{ n \right\}\)
\(?\,\,\,:\,\,\,0 < n < 7\)
\(\left( 1 \right)\,\,\,{\rm{Med}}\left( S \right) < 5\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,n = 0\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left[ {Med\left( S \right) = {\rm{Med}}\left( {\left\{ { - 2,0,1,5,8} \right\}} \right) = 1} \right]\,\, \hfill \cr \\
\,{\rm{Take}}\,\,n = 1\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\left[ {Med\left( S \right) = {\rm{Med}}\left( {\left\{ { - 2,1,1,5,8} \right\}} \right) = 1} \right]\,\,\, \hfill \cr} \right.\,\)
\(\left( 2 \right)\,\,\,{\rm{Med}}\left( S \right) > 1\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,n = 7\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left[ {Med\left( S \right) = {\rm{Med}}\left( {\left\{ { - 2,1,5,7,8} \right\}} \right) = 5} \right]\,\, \hfill \cr \\
\,{\rm{Take}}\,\,n = 6\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\left[ {Med\left( S \right) = {\rm{Med}}\left( {\left\{ { - 2,1,5,6,8} \right\}} \right) = 5} \right]\,\,\, \hfill \cr} \right.\)
\(\left( {1 + 2} \right)\,\,\,\,1 < {\rm{Med}}\left( S \right) < 5\,\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)
\(\left( * \right)\,\,\left\{ \matrix{\\
\,n \le 0\,\,\, \Rightarrow \,\,\,\,Med\left( S \right) = 1\,\,,\,\,\,\,{\rm{impossible}} \hfill \cr \\
\,n \ge 7\,\,\, \Rightarrow \,\,\,\,Med\left( S \right) = 5\,\,,\,\,\,\,{\rm{impossible}} \hfill \cr} \right.\,\,\,\,\,\,\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net