It is currently 12 Dec 2017, 05:31

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If the area of a square increases by 69 percent, then the side of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42559

Kudos [?]: 135331 [0], given: 12687

If the area of a square increases by 69 percent, then the side of the [#permalink]

Show Tags

New post 02 Nov 2017, 02:54
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

65% (00:40) correct 35% (00:38) wrong based on 40 sessions

HideShow timer Statistics

Kudos [?]: 135331 [0], given: 12687

BSchool Forum Moderator
User avatar
D
Joined: 26 Feb 2016
Posts: 1691

Kudos [?]: 745 [0], given: 19

Location: India
Concentration: General Management, Leadership
WE: Sales (Retail)
Premium Member CAT Tests
If the area of a square increases by 69 percent, then the side of the [#permalink]

Show Tags

New post 02 Nov 2017, 03:36
Bunuel wrote:
If the area of a square increases by 69 percent, then the side of the square increases by

(A) 13%
(B) 30%
(C) 39%
(D) 69%
(E) 130%



Formula used: Area of square = \((Side)^2\)
If the area of the square increases by 69%, the side will increase by 30%

Lets assume the side of the square to be 10 units, making area 100 units!
The area increase by 69%, the new area will be 169 units.

Hence, the area will be \(\sqrt{169}\) or 13 units.
This is a thirty percent increase in the square's side(Option B)
_________________

Stay hungry, Stay foolish

2017-2018 MBA Deadlines

Class of 2020: Rotman Thread | Schulich Thread
Class of 2019: Sauder Thread

Kudos [?]: 745 [0], given: 19

Director
Director
User avatar
P
Joined: 18 Aug 2016
Posts: 597

Kudos [?]: 178 [0], given: 136

GMAT 1: 630 Q47 V29
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
Re: If the area of a square increases by 69 percent, then the side of the [#permalink]

Show Tags

New post 02 Nov 2017, 04:08
pushpitkc wrote:
Bunuel wrote:
If the area of a square increases by 69 percent, then the side of the square increases by

(A) 13%
(B) 30%
(C) 39%
(D) 69%
(E) 130%



Formula used: Area of square = \((Side)^2\)
If the area of the square increases by 69%, the side will increase by 30%

Lets assume the side of the square to be 10 units, making area 100 units!
The area increase by 69%, the new area will be 169 units.

Hence, the area will be \(\sqrt{169}\) or 13 units.
This is a thirty percent increase in the square's side(Option B)


Agree..alternatively

a + a + a^2/100 = 69%
2a + (a^2)/100 = 69%
hence a is 30
_________________

We must try to achieve the best within us


Thanks
Luckisnoexcuse

Kudos [?]: 178 [0], given: 136

1 KUDOS received
VP
VP
avatar
P
Joined: 22 May 2016
Posts: 1108

Kudos [?]: 397 [1], given: 640

If the area of a square increases by 69 percent, then the side of the [#permalink]

Show Tags

New post 02 Nov 2017, 16:20
1
This post received
KUDOS
Bunuel wrote:
If the area of a square increases by 69 percent, then the side of the square increases by

(A) 13%
(B) 30%
(C) 39%
(D) 69%
(E) 130%

Choose numbers
Original square, A, area = 100
New big square, B, area = 169

Area = s\(^2\). Area of A = 100. Area of B = 169
Side A = \(\sqrt{100} = 10\)
Side B = \(\sqrt{169} = 13\)

Percent increase in side length:
\(\frac{New-Old}{Old}*100\)

\(\frac{(13-10)}{10}=\frac{3}{10}=.3 * 100 =\) 30 percent

Answer B

Scale factor

The area of a square increases 69 percent = 1.69

Area = length * length
Both lengths increase by a scale factor, \(k\)
So new area equals (old area * \(k^2\))

\(k^2 = 1.69\)

\(k = \sqrt{1.69}\)

\(k = 1.3 =\) scale factor
Both sides of A were increased by the scale factor.

Percent increase in side length:
\(\frac{(New-Old)}{Old}*100\)

\(\frac{1.3-1}{1}=.3 * 100 =\) 30 percent

Answer B

Kudos [?]: 397 [1], given: 640

Expert Post
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1922

Kudos [?]: 1012 [0], given: 3

Location: United States (CA)
Re: If the area of a square increases by 69 percent, then the side of the [#permalink]

Show Tags

New post 05 Nov 2017, 08:23
Bunuel wrote:
If the area of a square increases by 69 percent, then the side of the square increases by

(A) 13%
(B) 30%
(C) 39%
(D) 69%
(E) 130%


Let’s let the side length of the original square = 10. Thus, the area of the original square = 100. Since the area of the square increases by 69 percent, the area of the new square = 169. Thus, the side length of the new square = √169 = 13, which is a 30% increase in the side length of the original square.

Answer: B
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1012 [0], given: 3

Re: If the area of a square increases by 69 percent, then the side of the   [#permalink] 05 Nov 2017, 08:23
Display posts from previous: Sort by

If the area of a square increases by 69 percent, then the side of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.