GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 Jul 2018, 01:12

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If the letters a, A, b, B, c, and C are arranged at random in a row

Author Message
TAGS:

### Hide Tags

Intern
Joined: 10 Oct 2010
Posts: 6
If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

14 Oct 2010, 08:14
2
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 100% (03:05) wrong based on 4 sessions

### HideShow timer Statistics

If the letters a, A, b, B, c, and C are arranged at random in a row, what is the probability that the lower case letter appear in increasing alphabetical order?
Math Expert
Joined: 02 Sep 2009
Posts: 47200
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

14 Oct 2010, 08:20
abeer16 wrote:
If the letters a, A, b, B, c, and C are arranged at random in a row, what is the probability that the lower case letter appear in increasing alphabetical order?

Three letters a, b, and c can be arranged in 3!=6 different ways and only one of them will be in increasing alphabetical order, namely: a-b-c, so P=1/6.
_________________
Intern
Joined: 08 May 2010
Posts: 14
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

15 Oct 2010, 09:29
Bunnel,

Need your help in understanding this.

If they are asking for the probability of arranging the lower case abc in alphabetical order

I am assuming that first a,b,c and then A , B, C can we be arranged in 3! possible ways.

Desired outcomes = 1 X 3!

Total possible outcomes = 6! as all the 6 letters can be arranged in 6! ways

hence prob = 3! / 6! = 1/120.

Please comment on where I am going wrong?

Thanks!
Manager
Joined: 22 Jun 2010
Posts: 155
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

15 Oct 2010, 10:29
hey Bunuel
what's wrong with my approach?
A,a,b,B,c,C
desired mode:abc
total :6!
p=4!/6!
Math Expert
Joined: 02 Sep 2009
Posts: 47200
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

15 Oct 2010, 12:15
sjgudapa wrote:
Bunnel,

Need your help in understanding this.

If they are asking for the probability of arranging the lower case abc in alphabetical order

I am assuming that first a,b,c and then A , B, C can we be arranged in 3! possible ways.

Desired outcomes = 1 X 3!

Total possible outcomes = 6! as all the 6 letters can be arranged in 6! ways

hence prob = 3! / 6! = 1/120.

Please comment on where I am going wrong?

Thanks!

imania wrote:
hey Bunuel
what's wrong with my approach?
A,a,b,B,c,C
desired mode:abc
total :6!
p=4!/6!

The problem with both solutions above is that favorable outcomes are much more, namely 120.

{***}{a}{b}{c} - $$4*3!=24$$ (capital letters are together);
{**}{a}{*}{b}{c} - $$C^2_3*2*4*3=72$$ (2 capital letters are together);
{*}{a}{*}{b}{*}{c} - $$C^3_4*3!=24$$ (capital letters are separated);

$$24+72+24=120$$ --> $$P=\frac{120}{6!}=\frac{1}{6}$$.

But this is a long way of solving. Consider one particular arrangement: A*B*C*, lower case letters for *. We can arrange lower case letters instead of * in 3!=6 ways but only one will be in alphabetical order AaBbCc, so 1 out of 6. For other such cases also only one out of 6 will be in alphabetical order (ABCabc, ....), so P=1/6.

Basically we can ignore capital letters for this problem and say: 3 letters a, b, and c can be arranged in 3!=6 different ways and only one of them will be in increasing alphabetical order, namely: a-b-c, so P=1/6.
_________________
Intern
Joined: 10 Jul 2010
Posts: 36
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

15 Oct 2010, 21:42
Hi Bunuel,

Even i also think that answer should be 4!/6!
Retired Moderator
Joined: 02 Sep 2010
Posts: 775
Location: London
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

16 Oct 2010, 00:50
1
deeplakshya wrote:
Hi Bunuel,

Even i also think that answer should be 4!/6!

Think of these arrangements as the following :

___[]___[]___[]____

Where [] act as placeholders for the smaller case alphabets. And for each arrangement of small case letters, the ___ are used as placeholders for one of more upper case letters.

For Eg. The arrangement of small case letters __b__a__c___ can then produce several final arrangements such as ABCbac or bACaBc etc etc

Now all I am going to say is that for each arrangement of type ___b___a___c___ there are an equal number of final arrangements possible. As you just change the small case letters used in your placeholders keeping the upper case ones constant.

How many types of arrangement exist ? The number of ways to place small case letters in place holders which is 3!
How many of these have a,b,c in order ? Just 1 : __a__b__c__

So probability = 1/6
_________________
Manager
Joined: 20 Apr 2010
Posts: 185
Schools: ISB, HEC, Said
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

16 Oct 2010, 03:54
I am totally confused

Bunuel can you pls simplyfy the answer for me

Math Expert
Joined: 02 Sep 2009
Posts: 47200
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

17 Oct 2010, 06:32
prashantbacchewar wrote:
I am totally confused

Bunuel can you pls simplyfy the answer for me

Can you please tell what exactly didn't you understand?

Simplifying: you can ignore capital letters for this problem. So, 3 letters a, b, and c can be arranged in 3!=6 different ways and only one of them will be in increasing alphabetical order, namely: a-b-c, so P=1/6.
_________________
Intern
Joined: 10 Oct 2010
Posts: 6
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

17 Oct 2010, 08:27
{**}{a}{*}{b}{c} -2C3*2*4*3=72 (2 capital letters are together);
plz explain it
Non-Human User
Joined: 09 Sep 2013
Posts: 7335
Re: If the letters a, A, b, B, c, and C are arranged at random in a row  [#permalink]

### Show Tags

01 Oct 2017, 03:25
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If the letters a, A, b, B, c, and C are arranged at random in a row &nbs [#permalink] 01 Oct 2017, 03:25
Display posts from previous: Sort by

# Events & Promotions

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.