Jun 22 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. Jun 23 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes. Jun 24 10:00 PM PDT  11:00 PM PDT Take 20% off the plan of your choice, now through midnight on Monday, 6/24
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 25 Jul 2009
Posts: 228

If the mean of set S does not exceed mean of any subset of
[#permalink]
Show Tags
Updated on: 07 Feb 2012, 16:24
Question Stats:
47% (01:19) correct 53% (01:31) wrong based on 461 sessions
HideShow timer Statistics
If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S ? I. Set S contains only one element II. All elements in set S are equal III. The median of set S equals the mean of set S A. none of the three qualities is necessary B. II only C. III only D. II and III only E. I, II, and III
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by angel2009 on 02 May 2010, 00:12.
Last edited by Bunuel on 07 Feb 2012, 16:24, edited 1 time in total.
Edited the question and added the OA




Math Expert
Joined: 02 Sep 2009
Posts: 55732

If the mean of set S does not exceed mean of any subset of
[#permalink]
Show Tags
04 May 2010, 14:00
If the mean of set S does not exceed mean of any subset of set S, which of the following must be true about set S ?
I. Set S contains only one element II. All elements in set S are equal III. The median of set S equals the mean of set SA. none of the three qualities is necessary B. II only C. III only D. II and III only E. I, II, and III "The mean of set S does not exceed mean of any subset of set S" > set S can be: A. \(S=\{x\}\)  S contains only one element (eg {7}); B. \(S=\{x, x, ...\}\)  S contains more than one element and all elements are equal (eg{7,7,7,7}). Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number). Example: S={3, 5} > mean of S=4. Pick subset with smallest number s'={3} > mean of s'=3 > 3<4. Now let's consider the statements: I. Set S contains only one element  not always true, we can have scenario B too (\(S=\{x, x, ...\}\)); II. All elements in set S are equal  true for both A and B scenarios, hence always true; III. The median of set S equals the mean of set S   true for both A and B scenarios, hence always true. So statements II and III are always true. Answer: D.
_________________




Manager
Joined: 25 Jul 2009
Posts: 228

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 00:46
Lets have a set S:{5,6,7} and Mean = 6 and Median = 6 Now one subset of S can be {6,7} whose mean > 6 So III is not always true!



CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2555
Location: Malaysia
Concentration: Technology, Entrepreneurship
GMAT 1: 670 Q49 V31 GMAT 2: 710 Q50 V35

Re: PS Challenge!
[#permalink]
Show Tags
Updated on: 02 May 2010, 08:30
IMO D 1 and 2nd both could be true, but in must be true we can omit which is not essential always. 2nd must be true. Now if 2nd is true then median must be equal to mean..
_________________
Fight for your dreams : For all those who fear from Verbal lets give it a fightMoney Saved is the Money Earned Jo Bole So Nihaal , Sat Shri Akaal Support GMAT Club by putting a GMAT Club badge on your blog/Facebook GMAT Club Premium Membership  big benefits and savingsGmat test review : http://gmatclub.com/forum/670to710alongjourneywithoutdestinationstillhappy141642.html
Originally posted by gurpreetsingh on 02 May 2010, 05:00.
Last edited by gurpreetsingh on 02 May 2010, 08:30, edited 1 time in total.



Senior Manager
Joined: 02 Oct 2009
Posts: 429
GMAT 1: 530 Q47 V17 GMAT 2: 710 Q50 V36
WE: Business Development (Consulting)

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 06:53
Quote: If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S ?
I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S I feel all the elements should be equal. if all the elements are equal then the mean will always be same as the element(no mater how many elements are considered for mean). at the same time the median will be equal to mean (all elements are equal) so I feel II&III are always true. ANS:D



Director
Joined: 25 Aug 2007
Posts: 713
WE 1: 3.5 yrs IT
WE 2: 2.5 yrs Retail chain

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 06:59
IMO A. Say S = {3, 3 ,6} and S1 = {6}. Mean of S = 4 while Mean of S1 = 6 Median of S = 3 while Median of S1 = 6. Let's check the three statements: I. Set S contains only one element [ We have three elements here. Incorrect] II. All elements in set S are equal [ No, not neccessary. Incorrect] III. The median of set S equals the mean of set S [ Not neccessary. We have Median of S = 3 and Mean of S = 4. Incorrect] angel2009 wrote: If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S ?
I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S
* none of the three qualities is necessary * II only * III only * II and III only * I, II, and III
_________________



Senior Manager
Joined: 02 Oct 2009
Posts: 429
GMAT 1: 530 Q47 V17 GMAT 2: 710 Q50 V36
WE: Business Development (Consulting)

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 07:25
@ykaiim
if u accept that there should be only 1 element then the rest 2 statements will by default be true.
if there is only one element a)All elements in set S are equal b)The median of set S equals the mean of set S



Manager
Joined: 02 Aug 2009
Posts: 99

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 07:35
My take
Statement 1: if the set is 6 6 6 6 6 more than one so this is not sufficient
Statement 2: If the set is 6 or 7 than the mean of the entire set is 6.5 but a subset mean can be 7 or 6 so having 2 different numbers does not satisfy this. So sufficient
Statement 3: From statement 2 we can't have multiple different values in the set so the median most = the mean
so I chose D



Director
Joined: 25 Aug 2007
Posts: 713
WE 1: 3.5 yrs IT
WE 2: 2.5 yrs Retail chain

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 09:11
Dear Ravi, The case I have put forward meets all the criteria of the stated problem. Tell me where I m wrong. May be I miss some important part. Answer A says none of the three qualities is necessary. I donot deny the case if set S has just one element but it is not neccessary to meet the conditions. RaviChandra wrote: @ykaiim
if u accept that there should be only 1 element then the rest 2 statements will by default be true.
if there is only one element a)All elements in set S are equal b)The median of set S equals the mean of set S
_________________



Senior Manager
Joined: 02 Oct 2009
Posts: 429
GMAT 1: 530 Q47 V17 GMAT 2: 710 Q50 V36
WE: Business Development (Consulting)

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 10:36
ykaiim wrote: If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S ? Ok please provide set of number(s),which violate the given 3 choices. Quote: Say S = {3, 3 ,6} and S1 = {6}. Mean of S = 4 while Mean of S1 = 6 Median of S = 3 while Median of S1 = 6. Let's check the three statements: the example provided by u. doesnt hold good for all the cases. Mean of S is 4. Mean of S1{3} is 3. S>S1... hope this is clear.



Manager
Joined: 25 Jul 2009
Posts: 228

Re: PS Challenge!
[#permalink]
Show Tags
02 May 2010, 12:19
The biggest problem what some of us made is that we didn't consider the points independently. I mean to say that we can't solve the problem as per the following logic Quote: if all the elements are equal then the mean will always be same as the element(no mater how many elements are considered for mean) . We should treat each point mutually exclusive and independent. When we'll discuss about II we don't need to interpret II on the basis of I.



Manager
Joined: 05 Mar 2010
Posts: 163

Re: PS Challenge!
[#permalink]
Show Tags
05 May 2010, 02:10
Bunuel wrote: angel2009 wrote: If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S ?
I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S
A. none of the three qualities is necessary B. II only C. III only D. II and III only E. I, II, and III "The mean of set S does not exceed mean of any subset of set S" > set S can be: A. \(S=\{x\}\)  S contains only one element (eg {7}); B. \(S=\{x, x, ...\}\)  S contains more than one element and all elements are equal (eg{7,7,7,7}). Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number). Example: S={3, 5} > mean of S=4. Pick subset with smallest number s'={3} > mean of s'=3 > 3<4. Now let's consider the statements: I. Set S contains only one element  not always true, we can have scenario B too (\(S=\{x, x, ...\}\)); II. All elements in set S are equal  true for both A and B scenarios, hence always true; III. The median of set S equals the mean of set S   true for both A and B scenarios, hence always true. So statements II and III are always true. Answer: D. Why can't we consider the subset with the greatest number Ex S= (5,6,7) and subset s (7) Please explain
_________________



Math Expert
Joined: 02 Sep 2009
Posts: 55732

Re: PS Challenge!
[#permalink]
Show Tags
05 May 2010, 02:46
hardnstrong wrote: Why can't we consider the subset with the greatest number Ex S= (5,6,7) and subset s (7) Please explain The questions says: the mean of set S does not exceed mean of ANY subset of set S > Mean of S<=Mean of ANY subset of S. I considered the example of subset with smallest number to show that set S can not have 2 (or more) different elements. In any set with 2 (or more) different elements we can pick subset that will have the smaller mean than the mean of the entire set. In your example (S={5,6,7}, mean of S=6), there are subsets of S with smaller mean (eg s'={5} or s'={5,6}), with the mean equal to the mean of entire set (eg s'={5,7} or s'={6}) and with bigger mean (eg s'={7} or s'={6,7}). The stem could have stated opposite thing: "the mean of ANY subset of S does not exceed mean of S" and the answer would be the same. And to demonstrate that pick the subset with biggest number of the set in a set with 2 (or more) different elements and you'll see that this subset will have the mean bigger than the mean of entire set. Basically this part of the stem is just the complicated way of saying that S contains either A. only one element or B. more than one identical elements. Hope it's clear.
_________________



Manager
Joined: 05 Mar 2010
Posts: 163

Re: PS Challenge!
[#permalink]
Show Tags
05 May 2010, 03:14
Thanks bunuel. it clear now +1 ANY is the catch here. Sometimes a single word can take things in opposite direction, just as in this case
_________________



Intern
Status: Simply  Chasing GMAT
Joined: 04 May 2010
Posts: 21
Location: United Kingdom
Concentration: International Business, Entrepreneurship
GMAT Date: 01302012
GPA: 3
WE: Consulting (Computer Software)

Re: PS Challenge!
[#permalink]
Show Tags
18 Sep 2010, 23:43
Hi Bunuel, Why the first statement is wrong...didn't understand. I. Set S contains only one element.
_________________
If you like my post, consider giving me a KUDOS. THANKS!!!
Dreams Unlimited....



Retired Moderator
Joined: 02 Sep 2010
Posts: 755
Location: London

Re: PS Challenge!
[#permalink]
Show Tags
18 Sep 2010, 23:54
Because can contain the same element repeat an arbitrary number of times as well. The set A={3,3,3,3,3} id different from B={3} Yet in either case the condition of means is satisfied, whereas A has 5 elements and B has only 1
_________________



Intern
Status: Simply  Chasing GMAT
Joined: 04 May 2010
Posts: 21
Location: United Kingdom
Concentration: International Business, Entrepreneurship
GMAT Date: 01302012
GPA: 3
WE: Consulting (Computer Software)

Re: PS Challenge!
[#permalink]
Show Tags
19 Sep 2010, 00:03
Nope. Let's go my way...let say if set S={3}....then mean/median = 3 (this does satisfy with question stem "If the mean of set S does not exceed mean of any subset of set S")....then this is true. please correct me if I am missing anything.
_________________
If you like my post, consider giving me a KUDOS. THANKS!!!
Dreams Unlimited....



Math Expert
Joined: 02 Sep 2009
Posts: 55732

Re: PS Challenge!
[#permalink]
Show Tags
19 Sep 2010, 02:03
appy001 wrote: Hi Bunuel,
Why the first statement is wrong...didn't understand. I. Set S contains only one element. appy001 wrote: Nope. Let's go my way...let say if set S={3}....then mean/median = 3 (this does satisfy with question stem "If the mean of set S does not exceed mean of any subset of set S")....then this is true.
please correct me if I am missing anything. Question asks: "which of the following MUST be true about set S" (not COULD be true). I. Set S contains only one element > it's not necessarily true as S can contain more than one element and still satisfy the requirement in stem. For example if S={3, 3, 3, 3} then mean of S equals to 3 and it does not exceed the mean of ANY subset of S, which also will be equal to 3. Hope it's clear.
_________________



Manager
Joined: 11 Jul 2010
Posts: 181

Re: PS Challenge!
[#permalink]
Show Tags
19 Sep 2010, 03:00
oh well.. I read "one element" as one TYPE of element  that is only the same unique element in what ever number for the whole set which is essentially the same as II... elements is really a reference to the data points in the set



Retired Moderator
Joined: 02 Sep 2010
Posts: 755
Location: London

Re: PS Challenge!
[#permalink]
Show Tags
19 Sep 2010, 08:10
gmat1011 wrote: oh well.. I read "one element" as one TYPE of element  that is only the same unique element in what ever number for the whole set which is essentially the same as II... elements is really a reference to the data points in the set In set theory there is no requirement for uniqueness of elements, and in general elements does not refer to unique constituents So {3,3,3} is different from {3}
_________________







Go to page
1 2 3
Next
[ 45 posts ]



