Last visit was: 20 Nov 2025, 08:00 It is currently 20 Nov 2025, 08:00
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
AnkitK
Joined: 11 Feb 2011
Last visit: 01 Dec 2012
Posts: 86
Own Kudos:
1,329
 [1]
Given Kudos: 21
Posts: 86
Kudos: 1,329
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
subhashghosh
User avatar
Retired Moderator
Joined: 16 Nov 2010
Last visit: 25 Jun 2024
Posts: 896
Own Kudos:
1,279
 [2]
Given Kudos: 43
Location: United States (IN)
Concentration: Strategy, Technology
Products:
Posts: 896
Kudos: 1,279
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
bhandariavi
Joined: 04 Apr 2010
Last visit: 14 Mar 2012
Posts: 89
Own Kudos:
Given Kudos: 31
Posts: 89
Kudos: 692
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
DmitryFarber
User avatar
Manhattan Prep Instructor
Joined: 22 Mar 2011
Last visit: 08 Nov 2025
Posts: 3,020
Own Kudos:
8,565
 [1]
Given Kudos: 57
Expert
Expert reply
GMAT Focus 1: 745 Q86 V90 DI85
Posts: 3,020
Kudos: 8,565
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Subhashghosh is correct, as (-1)^-1 stays negative, while (-2)^-2 becomes positive.

-1 < 1/4

This is an odd problem, though. I agree that it should mention that x and y aren't 0. It also shouldn't ask which option is greater, as this rules out in advance the possibility that the two expressions are equal. A real GMAT question would typically ask if one or the other was greater, not *which* expression is greater.
User avatar
bhandariavi
Joined: 04 Apr 2010
Last visit: 14 Mar 2012
Posts: 89
Own Kudos:
Given Kudos: 31
Posts: 89
Kudos: 692
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks DmitryFarber and Subashgosh. Sometimes my mind stops working :)
avatar
DeepthiRajan
Joined: 15 Mar 2010
Last visit: 29 Jul 2011
Posts: 1
Own Kudos:
Posts: 1
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Stmt 1 : if y= -3 then x = -2 in which case x^2<y^2
if y =3 then x =4 ==> x^2> y^2 Hence Insuff

Stmt2: xy> x any positive values of x and y in which either x and y can be greater hence again Insuff

Combining 1 and 2 gives us that x is positive and therefore, x^2> y^2 . Hence C
avatar
HKHR
Joined: 31 Mar 2013
Last visit: 27 Apr 2023
Posts: 43
Own Kudos:
Given Kudos: 110
Location: India
GPA: 3.02
Posts: 43
Kudos: 79
Kudos
Add Kudos
Bookmarks
Bookmark this Post
subhashghosh
(1)

x = y + 1

Let x = 2, y = 1

x^x > y

x = -1 and y = -2

x^x < y^y

Not Sufficient

The option here should say x and y != 0 as GMAT does not test 0^0.

(2)

xy > x and x is positive

=> y > 0

But x can be > y or y can be > x

Not Sufficient


(1) + (2)

x^x > y^y

Answer - C


doesnt this statement: "xy > x and x is positive" actually mean

==> y>1

if this is the case i am guessing statement 2 will be sufficient to solve the question. Am i making any mistake here?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,536
Kudos
Add Kudos
Bookmarks
Bookmark this Post
emailmkarthik
subhashghosh
(1)

x = y + 1

Let x = 2, y = 1

x^x > y

x = -1 and y = -2

x^x < y^y

Not Sufficient

The option here should say x and y != 0 as GMAT does not test 0^0.

(2)

xy > x and x is positive

=> y > 0

But x can be > y or y can be > x

Not Sufficient


(1) + (2)

x^x > y^y

Answer - C


doesnt this statement: "xy > x and x is positive" actually mean

==> y>1

if this is the case i am guessing statement 2 will be sufficient to solve the question. Am i making any mistake here?

If x and y are both integers, which is larger, x^x or y^y?

(1) x = y + 1 --> if \(y\) is positive integer then \(x^x=(y+1)^{y+1}>y^y\) but if \(y=-2\) then \(x=-1\) and \(x^x=-1<\frac{1}{4}=y^y\)

(2) x^y > x and x is positive --> since \(x\) is positive then \(x^{y-1}>1\) --> since \(x\) and \(y\) are integers then \(y>1\). If \(x=1\) and \(y=2\) then \(x^x<y^y\) but if \(x=3\) and \(y=2\) then \(x^x>y^y\). Not sufficient.

(1)+(2) From (2) \(y>1\), so it's a positive integer then from (1) \(x^x=(y+1)^{y+1}>y^y\). Sufficient.

Answer: C.

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-x-and-y-are-both-integers-which-is-larger-x-x-or-y-y-127756.html
Moderators:
Math Expert
105420 posts
496 posts