GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Jan 2019, 17:02

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • FREE Quant Workshop by e-GMAT!

     January 20, 2019

     January 20, 2019

     07:00 AM PST

     07:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.
  • Free GMAT Strategy Webinar

     January 19, 2019

     January 19, 2019

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.

If x and y are positive integers such that the product of x

  post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
Manager
Manager
avatar
Joined: 25 Feb 2008
Posts: 53
If x and y are positive integers such that the product of x  [#permalink]

Show Tags

New post 23 Jul 2008, 06:22
If x and y are positive integers such that the product of x and y is prime, what is the units’ digit of 7x + 9y?

(1) 24 < y < 32
(2) x = 1

(A) Statement (1) ALONE is sufficient to answer the question, but statement (2) alone is not.
(B) Statement (2) ALONE is sufficient to answer the question, but statement (1) alone is not.
(C) Statements (1) and (2) TAKEN TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient.
(D) EACH statement ALONE is sufficient to answer the question.
(E) Statements (1) and (2) TAKEN TOGETHER are NOT sufficient

--== Message from the GMAT Club Team ==--

THERE IS LIKELY A BETTER DISCUSSION OF THIS EXACT QUESTION.
This discussion does not meet community quality standards. It has been retired.


If you would like to discuss this question please re-post it in the respective forum. Thank you!

To review the GMAT Club's Forums Posting Guidelines, please follow these links: Quantitative | Verbal Please note - we may remove posts that do not follow our posting guidelines. Thank you.
Senior Manager
Senior Manager
avatar
Joined: 06 Apr 2008
Posts: 374
Re: Units' digit  [#permalink]

Show Tags

New post 23 Jul 2008, 06:37
Capthan wrote:
If x and y are positive integers such that the product of x and y is prime, what is the units’ digit of 7x + 9y?

(1) 24 < y < 32
(2) x = 1

(A) Statement (1) ALONE is sufficient to answer the question, but statement (2) alone is not.
(B) Statement (2) ALONE is sufficient to answer the question, but statement (1) alone is not.
(C) Statements (1) and (2) TAKEN TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient.
(D) EACH statement ALONE is sufficient to answer the question.
(E) Statements (1) and (2) TAKEN TOGETHER are NOT sufficient


Product of two numbers prime means that one number is 1 and other number is prime number itself

Statement 1) tells that y is prime number since it is not 1 and prime number will be 29 in this case. Therefore 7x + 9y = 7*1 + 9*29. Sufficient

Statement 2) is not sufficient since it does not tell any way of finding value of y.

Answer is A)
Current Student
User avatar
Joined: 31 Aug 2007
Posts: 364
Re: Units' digit  [#permalink]

Show Tags

New post 23 Jul 2008, 07:09
1
nmohindru wrote:
Capthan wrote:
If x and y are positive integers such that the product of x and y is prime, what is the units’ digit of 7x + 9y?

(1) 24 < y < 32
(2) x = 1

(A) Statement (1) ALONE is sufficient to answer the question, but statement (2) alone is not.
(B) Statement (2) ALONE is sufficient to answer the question, but statement (1) alone is not.
(C) Statements (1) and (2) TAKEN TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient.
(D) EACH statement ALONE is sufficient to answer the question.
(E) Statements (1) and (2) TAKEN TOGETHER are NOT sufficient


Product of two numbers prime means that one number is 1 and other number is prime number itself

Statement 1) tells that y is prime number since it is not 1 and prime number will be 29 in this case. Therefore 7x + 9y = 7*1 + 9*29. Sufficient

Statement 2) is not sufficient since it does not tell any way of finding value of y.

Answer is A)


E, y could be 29 or 31.
Director
Director
avatar
Joined: 23 Sep 2007
Posts: 742
Re: Units' digit  [#permalink]

Show Tags

New post 23 Jul 2008, 07:31
A

y = 31 or 29

the unit digit of 9y is going to be 1 for both cases

7 + 1 = 8
Current Student
User avatar
Joined: 31 Aug 2007
Posts: 364
Re: Units' digit  [#permalink]

Show Tags

New post 23 Jul 2008, 07:54
gmatnub wrote:
A

y = 31 or 29

the unit digit of 9y is going to be 1 for both cases

7 + 1 = 8


Oops! :oops:
Retired Moderator
User avatar
Joined: 18 Jul 2008
Posts: 849
Re: Units' digit  [#permalink]

Show Tags

New post 23 Jul 2008, 15:15
31 x 9 = 279
29 x 9 = 261

Did I miss something?

young_gun wrote:
gmatnub wrote:
A

y = 31 or 29

the unit digit of 9y is going to be 1 for both cases

7 + 1 = 8


Oops! :oops:
Senior Manager
Senior Manager
User avatar
Joined: 19 Mar 2008
Posts: 337
Re: Units' digit  [#permalink]

Show Tags

New post 25 Jul 2008, 06:50
xy= prime
one of x or y is 1 and the other is prime


(1) 24 < y < 32
so y is not 1
y can be 29 or 31
Not sufficient

(2) x = 1
no information on y
Not sufficient

(1) & (2)
we cannot get the exact info on y
not sufficient
Manager
Manager
avatar
Joined: 27 Apr 2008
Posts: 110
Re: Units' digit  [#permalink]

Show Tags

New post 26 Jul 2008, 02:52
E

from 1 and from the combination of 1 and 2 we know:
y could be 29 or 31

7*x=7

9*y= 9*31 or 9*29

the unit digit would therefore be 9 or 1

9+7=16, so unit 6

1+7=8, so unit 8

so ins

--== Message from the GMAT Club Team ==--

THERE IS LIKELY A BETTER DISCUSSION OF THIS EXACT QUESTION.
This discussion does not meet community quality standards. It has been retired.


If you would like to discuss this question please re-post it in the respective forum. Thank you!

To review the GMAT Club's Forums Posting Guidelines, please follow these links: Quantitative | Verbal Please note - we may remove posts that do not follow our posting guidelines. Thank you.
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 9448
Premium Member
Re: If x and y are positive integers such that the product of x  [#permalink]

Show Tags

New post 07 Jul 2018, 21:59
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: If x and y are positive integers such that the product of x &nbs [#permalink] 07 Jul 2018, 21:59
Display posts from previous: Sort by

If x and y are positive integers such that the product of x

  post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Gladiator59



Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.