Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 20 Jul 2019, 11:03

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x is an integer, is x|x|<2^x ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
avatar
B
Joined: 03 Jul 2016
Posts: 31
GMAT ToolKit User
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 05 Dec 2017, 08:16
2
Bunuel wrote:
Walkabout wrote:
If x is an integer, is x|x|<2^x ?

(1) x < 0
(2) x= -10


If x is an integer, is x|x|<2^x ?

Notice that the RHS (right hand side) of the expression is always positive (\(2^x>0\)), but the LHS is positive when \(x>0\) (\(x>0\) --> \(x*|x|=x^2\)), negative when \(x<0\) (\(x<0\) --> \(x*|x|=-x^2\)) and equals to zero when \(x={0}\).

(1) x < 0. According to the above \(x*|x|<0<2^x\). Sufficient.

(2) x = -10. The same here \(x*|x|=-100<0<\frac{1}{2^{10}}\). Sufficient.

Answer: D.


what is wrong in my approach :

x |x| < 2^x
x *sqrt(x^2) < 2^x
square on both sides,
x^2 * x^2 < 2^2x
x^4 < 2^2x

given 1 stmt, x as -ve, always x^4 > 2^2x, whereas I know i am making some mistake.
are we not allowed to take square on both sides?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56304
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 05 Dec 2017, 08:24
Avinash_R1 wrote:
Bunuel wrote:
Walkabout wrote:
If x is an integer, is x|x|<2^x ?

(1) x < 0
(2) x= -10


If x is an integer, is x|x|<2^x ?

Notice that the RHS (right hand side) of the expression is always positive (\(2^x>0\)), but the LHS is positive when \(x>0\) (\(x>0\) --> \(x*|x|=x^2\)), negative when \(x<0\) (\(x<0\) --> \(x*|x|=-x^2\)) and equals to zero when \(x={0}\).

(1) x < 0. According to the above \(x*|x|<0<2^x\). Sufficient.

(2) x = -10. The same here \(x*|x|=-100<0<\frac{1}{2^{10}}\). Sufficient.

Answer: D.


what is wrong in my approach :

x |x| < 2^x
x *sqrt(x^2) < 2^x
square on both sides,
x^2 * x^2 < 2^2x
x^4 < 2^2x

given 1 stmt, x as -ve, always x^4 > 2^2x, whereas I know i am making some mistake.
are we not allowed to take square on both sides?


We can raise both parts of an inequality to an even power if we know that both parts of an inequality are non-negative (the same for taking an even root of both sides of an inequality). Here x|x| is negative if x is negative, so we cannot square.


RAISING INEQUALITIES TO EVEN/ODD POWER

1. We can raise both parts of an inequality to an even power if we know that both parts of an inequality are non-negative (the same for taking an even root of both sides of an inequality).
For example:
\(2<4\) --> we can square both sides and write: \(2^2<4^2\);
\(0\leq{x}<{y}\) --> we can square both sides and write: \(x^2<y^2\);

But if either of side is negative then raising to even power doesn't always work.
For example: \(1>-2\) if we square we'll get \(1>4\) which is not right. So if given that \(x>y\) then we cannot square both sides and write \(x^2>y^2\) if we are not certain that both \(x\) and \(y\) are non-negative.

2. We can always raise both parts of an inequality to an odd power (the same for taking an odd root of both sides of an inequality).
For example:
\(-2<-1\) --> we can raise both sides to third power and write: \(-2^3=-8<-1=-1^3\) or \(-5<1\) --> \(-5^3=-125<1=1^3\);
\(x<y\) --> we can raise both sides to third power and write: \(x^3<y^3\).

Adding, subtracting, squaring etc.: Manipulating Inequalities.

9. Inequalities



For more check Ultimate GMAT Quantitative Megathread


_________________
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14590
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 13 Dec 2017, 21:48
Hi All,

We're told that X is an integer. We're asked if X|X| < 2^X. This is a YES/NO question. We can answer it with a bit of Number Property knowledge.

1) X < 0

With Fact 1, we know that X is NEGATIVE. By definition, that means...
X|X| = (Neg)|Neg| = Negative
2^(Negative) = Positive
Thus, X|X| will ALWAYS be less than 2^X and the answer to the question is ALWAYS YES.
Fact 1 is SUFFICIENT

2) X = -10

With the value of X, we can absolutely answer the question (we would just need to plug in that value:
Is (-10)|-10| < 2^(-10)?
The answer to the question IS yes, but we don't have to actually do that work. There would be just one answer to the question, so it doesn't really matter what that one answer is.
Fact 2 is SUFFICIENT

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/
Intern
Intern
User avatar
B
Joined: 11 Sep 2017
Posts: 18
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 05 Jan 2018, 03:00
adkikani wrote:
Bunuel mikemcgarry IanStewart shashankism Engr2012

I know this is an OG Q, but is it not strange that st 2 is an integral part of st 1.
During actual exam I do not think to need to evaluate S2 separately since x=-10
is always going to be x<0. Let me know if my understanding is correct


Hi Adkikani,

I agree! This thinking can save us some time :-)

Aiena.
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1196
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 05 Jan 2018, 06:14
adkikani wrote:
Bunuel mikemcgarry IanStewart shashankism niks18

I know this is an OG Q, but is it not strange that st 2 is an integral part of st 1.
During actual exam I do not think to need to evaluate S2 separately since x=-10
is always going to be x<0. Let me know if my understanding is correct


Hi adkikani

Here RHS will be always positive irrespective of the value of \(x\) and LHS can be positive or negative.

So the question becomes very simple if we know the value of \(x\). Incidentally both the statements clearly mention the same thing. Hence this is one of the easiest question and the stats also confirms it.

You are right in assuming that if x<0 hold true then x=-10 will be true here.
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 11720
Re: If x is an integer, is x|x|<2^x ?  [#permalink]

Show Tags

New post 11 Jan 2019, 04:46
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: If x is an integer, is x|x|<2^x ?   [#permalink] 11 Jan 2019, 04:46

Go to page   Previous    1   2   [ 26 posts ] 

Display posts from previous: Sort by

If x is an integer, is x|x|<2^x ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne