Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Do RC/MSR passages scare you? e-GMAT is conducting a masterclass to help you learn – Learn effective reading strategies Tackle difficult RC & MSR with confidence Excel in timed test environment
Prefer video-based learning? The Target Test Prep OnDemand course is a one-of-a-kind video masterclass featuring 400 hours of lecture-style teaching by Scott Woodbury-Stewart, founder of Target Test Prep and one of the most accomplished GMAT instructors.
Be sure to select an answer first to save it in the Error Log before revealing the correct answer (OA)!
Difficulty:
(N/A)
Question Stats:
0%
(00:00)
correct 0%
(00:00)
wrong
based on 0
sessions
History
Date
Time
Result
Not Attempted Yet
I believe the correct answer is D.
Basically, in order for xy to be divisible by 3, x or y HAVE TO be divisible by 3 on their own, since 3 is a prime number.
Statement 1: y = 2^(16) - 1: The key here is knowing that 2^(odd integer) = 3n + 2, and 2^(even integer) = 3n + 1 (where n is a non-negative integer). Since 16 is an even integer, 2^16 will be equal to 3n + 1. Therefore 2^16 - 1 = 3n + 1 - 1 = 3n. Therefore y is divisible by 3, and Statement 1 is sufficient.
The reason that this rule works for 2^n when considering divisibility by 3 is as follows (sorry if this is confusing): if you take a number in the form of 3n + 1, and multiply it by 2, you get 6n + 2, which can be rewritten in the form 2*3n + 2 = 3m + 2. Multiplied again by 2, you get 6m + 4, which can be rewritten in the form 6(m+1) + 1 = 3p + 1. The number 2 (being 2^1) is in the form 3n + 2. Subsequently all numbers in the form 2^(odd number) can be written as 3n + 2, and all numbers in the form 2^(even number) can be written as 3n + 1. I remember learning this somewhere years ago, there might be a better explanation out there on the internet.
Statement 2: The sum of the digits of x equals 6^k : For x to be divisible by 3, the sum of its digits must also be divisible by 3. It is given that the sum of the digits of x equals 6^k.
\(6^k = 3^k*2^k\) and therefore x is definitely divisible by 3. Therefore Statement 2 is also sufficient.
Since both Statement 1 and 2 are both sufficient by themselves, the correct answer is D.
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.