Last visit was: 20 Nov 2025, 03:33 It is currently 20 Nov 2025, 03:33
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Maxswe
Joined: 31 Oct 2011
Last visit: 24 Aug 2013
Posts: 17
Own Kudos:
209
 [13]
Given Kudos: 2
GMAT 1: 650 Q45 V35
GMAT 1: 650 Q45 V35
Posts: 17
Kudos: 209
 [13]
1
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,464
 [9]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,464
 [9]
6
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
Vips0000
User avatar
Current Student
Joined: 15 Sep 2012
Last visit: 02 Feb 2016
Posts: 521
Own Kudos:
1,291
 [3]
Given Kudos: 23
Status:Done with formalities.. and back..
Location: India
Concentration: Strategy, General Management
Schools: Olin - Wash U - Class of 2015
WE:Information Technology (Computer Software)
Products:
Schools: Olin - Wash U - Class of 2015
Posts: 521
Kudos: 1,291
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
catennacio
Joined: 15 Apr 2010
Last visit: 29 Nov 2022
Posts: 35
Own Kudos:
Given Kudos: 11
Posts: 35
Kudos: 109
Kudos
Add Kudos
Bookmarks
Bookmark this Post
E for me too. Same reasoning as above. Can you pls check the OA?
User avatar
Maxswe
Joined: 31 Oct 2011
Last visit: 24 Aug 2013
Posts: 17
Own Kudos:
Given Kudos: 2
GMAT 1: 650 Q45 V35
GMAT 1: 650 Q45 V35
Posts: 17
Kudos: 209
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Vips0000
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7xyz is divided by 4?

(1) yz = 3

(2) x is odd.

Easy way to answer this question maybe?
I think the OA is wrong. Please check source of question again.

Question needs remainder when 7xyz is divided by 4.

Statement 1: yz=3 => we are looking for remainder of 21x/4. this would depend on value of x. if x=1, remainder =1. But if x=2 remainder =2.
Not sufficient.

Statment 2: x is odd => remainder of some odd number*yz/4. This would again depend on what odd number it is and also on values of y and z.
Not sufficient.

Combining statement 1 and 2.
we need remainder of 21x/4 where x is odd.
This is still not sufficient as if x =1 remainder is 1
while if x=3 remainder is 3

Hence ans E it is!


Yeah I made a Typo in the question stem! sorry
avatar
seths22
Joined: 18 Jul 2010
Last visit: 05 May 2015
Posts: 3
Own Kudos:
Posts: 3
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Looking for remainder left after 7^(xyz) / 4...examine the cycle of remainders left when 7 to some power is divided by 4. Use cycle of powers for last digit of 7: 7, 9, 3, 1

7^1 = 7/4 ------>R3
7^2 = 9/4 ------>R1
7^3 = 3/4 ------>R3
7^4 = 1/4------->R1

It appears that 7^n divided by 4 alternates between odd and even powers in producing either a remainder of 3 or 1, respectively.

(1) yz = 3

7^(3x) / 4 --> ?

x may be any integer, odd or even, that produces an odd or even power when multiplied by 3. Remainder may be 3 or 1.

Insufficient.

(2) x = odd

7^(yz *some odd integer x) -->?

Product of yz may be any integer, odd or even, that produces an odd or even power when multiplied by odd integer x. Remainder may be 3 or 1.

Insufficient.

(1) & (2)

7^(3*some odd integer n) --> 7^(xyz = some odd integer)

Since we now know that xyz = some odd integer, then we know that the remainder of 7^(xyz) will produce a remainder of 3 when divided by 4, based on the cycle of remainders outlined above.

Sufficient.

C.
avatar
catennacio
Joined: 15 Apr 2010
Last visit: 29 Nov 2022
Posts: 35
Own Kudos:
Given Kudos: 11
Posts: 35
Kudos: 109
Kudos
Add Kudos
Bookmarks
Bookmark this Post
seths22
Looking for remainder left after 7^(xyz) / 4...examine the cycle of remainders left when 7 to some power is divided by 4. Use cycle of powers for last digit of 7: 7, 9, 3, 1

7^1 = 7/4 ------>R3
7^2 = 9/4 ------>R1
7^3 = 3/4 ------>R3
7^4 = 1/4------->R1

It appears that 7^n divided by 4 alternates between odd and even powers in producing either a remainder of 3 or 1, respectively.

(1) yz = 3

7^(3x) / 4 --> ?

x may be any integer, odd or even, that produces an odd or even power when multiplied by 3. Remainder may be 3 or 1.

Insufficient.

(2) x = odd

7^(yz *some odd integer x) -->?

Product of yz may be any integer, odd or even, that produces an odd or even power when multiplied by odd integer x. Remainder may be 3 or 1.

Insufficient.

(1) & (2)

7^(3*some odd integer n) --> 7^(xyz = some odd integer)

Since we now know that xyz = some odd integer, then we know that the remainder of 7^(xyz) will produce a remainder of 3 when divided by 4, based on the cycle of remainders outlined above.

Sufficient.

C.

Question is 7xyz, not 7^(xyz).
avatar
seths22
Joined: 18 Jul 2010
Last visit: 05 May 2015
Posts: 3
Own Kudos:
Posts: 3
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
catennacio

Question is 7xyz, not 7^(xyz).

He edited the original question.

And on further reflection, I think my reasoning above is flawed. Just using the cycle of powers for 7 (i.e. last digit) won't provide accurate answers for remainders in all cases.

For example, 7^n / 6:

7^1 = 7 / 6 -----> R1
7^2 = 49 / 6 ---->R1
7^3 = 343 / 6 --> R1

But just considering 7, 3, 9, 1 (last digits of 7) all give different remainders.

A more sound logic may be: since 7^n always produces an odd integer, the remainder will always be 1 less or more than a multiple of the divisor 4 (4n +1 --> R1 or 4n - 1 --> R3).
avatar
Astrocat15
Joined: 07 Nov 2012
Last visit: 31 Oct 2013
Posts: 4
Own Kudos:
Given Kudos: 10
Posts: 4
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Vips0000
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7xyz is divided by 4?

(1) yz = 3

(2) x is odd.

Easy way to answer this question maybe?
I think the OA is wrong. Please check source of question again.

Question needs remainder when 7xyz is divided by 4.

Statement 1: yz=3 => we are looking for remainder of 21x/4. this would depend on value of x. if x=1, remainder =1. But if x=2 remainder =2.
Not sufficient.

Statment 2: x is odd => remainder of some odd number*yz/4. This would again depend on what odd number it is and also on values of y and z.
Not sufficient.

Combining statement 1 and 2.
we need remainder of 21x/4 where x is odd.
This is still not sufficient as if x =1 remainder is 1
while if x=3 remainder is 3

Hence ans E it is!

yz=3 does not mean its 21x. yz=3 means its 7^3x. if zy is odd and x is odd, it means 7 will always be to the "odd" power, which is only a remainder of 3.
User avatar
Vips0000
User avatar
Current Student
Joined: 15 Sep 2012
Last visit: 02 Feb 2016
Posts: 521
Own Kudos:
Given Kudos: 23
Status:Done with formalities.. and back..
Location: India
Concentration: Strategy, General Management
Schools: Olin - Wash U - Class of 2015
WE:Information Technology (Computer Software)
Products:
Schools: Olin - Wash U - Class of 2015
Posts: 521
Kudos: 1,291
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Astrocat15
Vips0000
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7xyz is divided by 4?

(1) yz = 3

(2) x is odd.

Easy way to answer this question maybe?
I think the OA is wrong. Please check source of question again.

Question needs remainder when 7xyz is divided by 4.

Statement 1: yz=3 => we are looking for remainder of 21x/4. this would depend on value of x. if x=1, remainder =1. But if x=2 remainder =2.
Not sufficient.

Statment 2: x is odd => remainder of some odd number*yz/4. This would again depend on what odd number it is and also on values of y and z.
Not sufficient.

Combining statement 1 and 2.
we need remainder of 21x/4 where x is odd.
This is still not sufficient as if x =1 remainder is 1
while if x=3 remainder is 3

Hence ans E it is!

yz=3 does not mean its 21x. yz=3 means its 7^3x. if zy is odd and x is odd, it means 7 will always be to the "odd" power, which is only a remainder of 3.
Aristocrat15- Note the question I responded to it is visible in my post(what is the remainder when 7xyz is divided by 4). The question was later edited.
User avatar
summer101
Joined: 06 Jun 2012
Last visit: 16 Jun 2014
Posts: 106
Own Kudos:
Given Kudos: 37
Posts: 106
Kudos: 1,051
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x, y and z are all positive integers, what is the remainder when 7xyz is divided by 4?
(i) yz = 3
(ii) x is odd

I dont know the OA
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,464
Kudos
Add Kudos
Bookmarks
Bookmark this Post
summer101
If x, y and z are all positive integers, what is the remainder when 7xyz is divided by 4?
(i) yz = 3
(ii) x is odd

I dont know the OA

Merging similar topics.

Notice that it should read 7^(xyz) instead of 7xyz.
User avatar
BangOn
Joined: 27 Feb 2012
Last visit: 22 Mar 2019
Posts: 95
Own Kudos:
Given Kudos: 22
Posts: 95
Kudos: 191
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7^(xyz) is divided by 4?

(1) yz = 3.
(2) x is odd.

7^(xyz) / 4

Even power raised to 7 will yield remainder 3
Odd power will yield 1

A) yz = 3 => which means xyz is odd. So remainder is 1.
B) X is odd. Odd/Even both pssbl.

What is the mistake here?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,464
Kudos
Add Kudos
Bookmarks
Bookmark this Post
BangOn
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7^(xyz) is divided by 4?

(1) yz = 3.
(2) x is odd.

7^(xyz) / 4

Even power raised to 7 will yield remainder 3
Odd power will yield 1

A) yz = 3 => which means xyz is odd. So remainder is 1.
B) X is odd. Odd/Even both pssbl.

What is the mistake here?

For (1) xyz could be even if x is even.

Hope it's clear.
User avatar
BangOn
Joined: 27 Feb 2012
Last visit: 22 Mar 2019
Posts: 95
Own Kudos:
Given Kudos: 22
Posts: 95
Kudos: 191
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
BangOn
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7^(xyz) is divided by 4?

(1) yz = 3.
(2) x is odd.

7^(xyz) / 4

Even power raised to 7 will yield remainder 3
Odd power will yield 1

A) yz = 3 => which means xyz is odd. So remainder is 1.
B) X is odd. Odd/Even both pssbl.

What is the mistake here?

For (1) xyz could be even if x is even.

Hope it's clear.

I am concerned about what yz represents here. Possibilities
1) product of y and z
2) representation of last two digits.

Representation of last two digit makes little sense.
Ok. Thanks Brunnel.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,464
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,464
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
BangOn
I am concerned about what yz represents here. Possibilities
1) product of y and z
2) representation of last two digits.

Representation of last two digit makes little sense.
Ok. Thanks Brunnel.

xyz means x*y*z. If it were otherwise it would be explicitly stated.
User avatar
fullymooned
Joined: 23 Oct 2013
Last visit: 27 Apr 2015
Posts: 41
Own Kudos:
Concentration: Strategy, Entrepreneurship
GMAT 1: 690 Q48 V36
GPA: 3
WE:Information Technology (Manufacturing)
GMAT 1: 690 Q48 V36
Posts: 41
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Here is the answer from Kaplan. I dont understand how he gets, If we increase x by 1, then the previous number is multiplied by 7.

This is a Value question. For sufficiency, we need to be able to determine one value for the remainder of 7xyz divided by 4. We need to determine the value of xyz. We are told that x, y, and z are all positive integers.

Evaluate the Statements:

Statement (1): We are given that yz = 3. We know that all of the variables are positive integers, so they must be 1 or greater. If we assume that x = 1, then we get:



The remainder when divided by 4 is 3.

If we increase x by 1, then the previous number is multiplied by 7. If the previous quotient has a remainder of 3 and we multiply that by 7, we get 21. Dividing this by 4, we get a remainder of 1. Increasing x by 1 again, we multiply the remainder of 1 by 7 and get 7. Dividing this by 4 will give us a remainder of 3. This pattern will continue indefinitely. We cannot determine one remainder from these conditions. Therefore, Statement (1) is Insufficient to answer the question. Eliminate choices (A) and (D).

Statement (2): We are told x is odd. This leaves us in the same situation as with Statement (1). When the number of 7s being multiplied is odd, we will get a remainder of 3. When the number of 7s is even, we will get a remainder of 1. Since we do not know the value of y or z, we do not know if the exponent will be odd or even. We cannot determine an answer from this information.

Statement (2) is Insufficient to answer the question. Eliminate choice (B).

Combined: We know that yz = 3 and x is odd. Since an odd number times an odd number is always odd, we know that the exponent will always be odd. An odd exponent will always give us a remainder of 3, as explained in the analysis of Statement (1). We can say that, with these conditions, the remainder will always be 3. Therefore, Statement (1) and Statement (2) combined are Sufficient to answer the question. Eliminate choice (E).

The correct answer is Choice (C).
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,464
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fullymooned
Here is the answer from Kaplan. I dont understand how he gets, If we increase x by 1, then the previous number is multiplied by 7.

This is a Value question. For sufficiency, we need to be able to determine one value for the remainder of 7xyz divided by 4. We need to determine the value of xyz. We are told that x, y, and z are all positive integers.

Evaluate the Statements:

Statement (1): We are given that yz = 3. We know that all of the variables are positive integers, so they must be 1 or greater. If we assume that x = 1, then we get:



The remainder when divided by 4 is 3.

If we increase x by 1, then the previous number is multiplied by 7. If the previous quotient has a remainder of 3 and we multiply that by 7, we get 21. Dividing this by 4, we get a remainder of 1. Increasing x by 1 again, we multiply the remainder of 1 by 7 and get 7. Dividing this by 4 will give us a remainder of 3. This pattern will continue indefinitely. We cannot determine one remainder from these conditions. Therefore, Statement (1) is Insufficient to answer the question. Eliminate choices (A) and (D).

Statement (2): We are told x is odd. This leaves us in the same situation as with Statement (1). When the number of 7s being multiplied is odd, we will get a remainder of 3. When the number of 7s is even, we will get a remainder of 1. Since we do not know the value of y or z, we do not know if the exponent will be odd or even. We cannot determine an answer from this information.

Statement (2) is Insufficient to answer the question. Eliminate choice (B).

Combined: We know that yz = 3 and x is odd. Since an odd number times an odd number is always odd, we know that the exponent will always be odd. An odd exponent will always give us a remainder of 3, as explained in the analysis of Statement (1). We can say that, with these conditions, the remainder will always be 3. Therefore, Statement (1) and Statement (2) combined are Sufficient to answer the question. Eliminate choice (E).

The correct answer is Choice (C).

For (1) we have \(7^{3x}\).

If they mean that if we increase x by 1 in \(7^{3x}\), then the previous number is multiplied by 7, then Kaplan is wrong.

If we increase x by 1 in \(7^{3x}\), then the previous number is multiplied by 7^3, not 7.
User avatar
fullymooned
Joined: 23 Oct 2013
Last visit: 27 Apr 2015
Posts: 41
Own Kudos:
Concentration: Strategy, Entrepreneurship
GMAT 1: 690 Q48 V36
GPA: 3
WE:Information Technology (Manufacturing)
GMAT 1: 690 Q48 V36
Posts: 41
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
That is what I thought so. Thanks for the clarification.

Posted from my mobile device
User avatar
himanshujovi
Joined: 28 Apr 2014
Last visit: 29 Aug 2016
Posts: 140
Own Kudos:
Given Kudos: 46
Posts: 140
Kudos: 77
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
BangOn
Maxswe
If x, y, and z are all positive integers, what is the remainder when 7^(xyz) is divided by 4?

(1) yz = 3.
(2) x is odd.

7^(xyz) / 4

Even power raised to 7 will yield remainder 3
Odd power will yield 1

A) yz = 3 => which means xyz is odd. So remainder is 1.
B) X is odd. Odd/Even both pssbl.

What is the mistake here?


For (1) xyz could be even if x is even.

Hope it's clear.
Bit confusing Bunuel because xyz here was interpreted by me as some three digit number with x in hundred's place , y in ten's place and z in one's place rather than X*Y*Z. Not sure if I am thinking too much into it. I do recollect seeing one question in this forum where xyz was interpreted as a three digit number.
 1   2   
Moderators:
Math Expert
105408 posts
496 posts