GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 25 Aug 2019, 15:55

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x & y are integers, how many solution pairs (x,y) satisfy the equat

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
VP
VP
User avatar
P
Joined: 03 Jun 2019
Posts: 1112
Location: India
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 04 Aug 2019, 10:36
10
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

15% (01:38) correct 85% (02:29) wrong based on 81 sessions

HideShow timer Statistics

If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Most Helpful Community Reply
GMAT Club Legend
GMAT Club Legend
User avatar
D
Joined: 18 Aug 2017
Posts: 4541
Location: India
Concentration: Sustainability, Marketing
Schools: INSEAD, HEC '22, IIM
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Premium Member CAT Tests
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 05 Aug 2019, 13:20
5
1
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36


giving a try ;
total factors of 72 ; 2^3*3^2 ; 4*3 ; 12
so answer has to be multiple of 12
from given expression (|x-2|-12)(|y+4|-36)=72
for values withing modulus we can get 4 pairs i.e x,y ( +,+) ( -,-) (+,-) (-,+)
also value either of x or y is 0 so ( 0,26) & ( 12,0)
so total possible pairs 6 * factor ; 6*12 ; 72
IMO C
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
General Discussion
Intern
Intern
avatar
B
Joined: 11 Jun 2019
Posts: 23
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 05 Aug 2019, 18:19
@archit3110- Can you help me understand the last part where you mentioned value of either X or Y can be zero.
Intern
Intern
avatar
B
Joined: 21 Mar 2019
Posts: 10
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 06 Aug 2019, 00:41
Can someone explain me how to tackle this one please ?
Intern
Intern
avatar
B
Joined: 12 Jan 2019
Posts: 28
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 07 Aug 2019, 02:59
1
Bunuel wrote:
_______________________
BUMPING FOR DISCUSSION.


Can you help with the explanation?? Thanks in advance :)
Intern
Intern
avatar
B
Joined: 18 Mar 2019
Posts: 30
Location: India
Concentration: Operations, International Business
WE: Operations (Manufacturing)
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 07 Aug 2019, 06:35
72 = {1,2,3,4,6,8,9,12,18,24,72}

A x B = 72

Case 1

A=1 B=72
Then (x,y) will be (13,104),(13,-112),(-11,104) and (-11,-112)

and so on for A=72 and B=1

Total such 12 A B pair cases will be there

And 4 integral pair will come as a result of each A B pair

Hence 48 is the answer in my opinion.

Posted from my mobile device
VP
VP
User avatar
P
Joined: 03 Jun 2019
Posts: 1112
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 07 Aug 2019, 07:34
kshitijhbti wrote:
72 = {1,2,3,4,6,8,9,12,18,24,72}

A x B = 72

Case 1

A=1 B=72
Then (x,y) will be (13,104),(13,-112),(-11,104) and (-11,-112)

and so on for A=72 and B=1

Total such 12 A B pair cases will be there

And 4 integral pair will come as a result of each A B pair

Hence 48 is the answer in my opinion.

Posted from my mobile device



A very good attempt but x & y may be negative integers.
Therefore, consider that case.
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
VP
VP
User avatar
P
Joined: 03 Jun 2019
Posts: 1112
Location: India
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 07 Aug 2019, 08:12
1
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36


Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

\(72 = 2^3*3^2\)
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Intern
Intern
avatar
B
Status: Preparing for GMAT
Joined: 09 May 2019
Posts: 1
WE: Information Technology (Consulting)
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 10 Aug 2019, 11:13
1
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36


Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

\(72 = 2^3*3^2\)
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A


Is there a shorter way to attempt this question?
Intern
Intern
avatar
B
Joined: 08 Aug 2018
Posts: 23
Location: India
Concentration: General Management, Finance
GMAT 1: 720 Q51 V36
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 10 Aug 2019, 12:02
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36


Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

\(72 = 2^3*3^2\)
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A



Bunuel how can this problem be solved faster?
VP
VP
User avatar
P
Joined: 03 Jun 2019
Posts: 1112
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 10 Aug 2019, 17:30
devangpandey007 wrote:
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36


Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

\(72 = 2^3*3^2\)
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A


Is there a shorter way to attempt this question?


You need to check values of modulus is positive for each case and need not solve final values of x and y.

Posted from my mobile device
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Intern
Intern
avatar
B
Joined: 11 Mar 2019
Posts: 1
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

Show Tags

New post 20 Aug 2019, 09:23
First determine the number of factors of 72: 2^3*3^2 => (3+1)*(2+1)=12 factors
Then, use the chart below to determine the zones for positivity of negativity of combined modulus on the number line:
______region 1____ region 2_____region 3
______________-4________2_____________
x-2 ---------------------------0++++++++++
y+4 -------------0++++++++++++++++++

Since there are 3 regions, (x,y) couple can take 3 different set of values for a couple of positive factors of 72. So we have 3*12 possibilities of couples.
Finally , the factors of 72 can be both positive or both negative, so multiply the number of couples found for positive factors by 2 =>3*12*2=72 couple possibilities.

Can you help me to see if this reasoning is correct?
GMAT Club Bot
If x & y are integers, how many solution pairs (x,y) satisfy the equat   [#permalink] 20 Aug 2019, 09:23
Display posts from previous: Sort by

If x & y are integers, how many solution pairs (x,y) satisfy the equat

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne