GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Jan 2019, 18:19

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     January 19, 2019

     January 19, 2019

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • FREE Quant Workshop by e-GMAT!

     January 20, 2019

     January 20, 2019

     07:00 AM PST

     07:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.

If |x| - |y| = |x+y| and xy not equal zero , which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Intern
Intern
avatar
Joined: 16 May 2009
Posts: 28
If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 09 Sep 2009, 09:11
5
46
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

64% (01:19) correct 36% (01:23) wrong based on 896 sessions

HideShow timer Statistics

If |x| - |y| = |x+y| and xy not equal zero , which of the following must be true ?

A. x-y> 0
B. x-y< 0
C. x+y> 0
D. xy>0
E. xy<0
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52285
Re: PS - Number system  [#permalink]

Show Tags

New post 14 Jul 2010, 04:56
13
28
divakarbio7 wrote:
if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0
B. x-y < 0
C. x+y >0
D. xy>0
E. xy<0


\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios:
1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct.
2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct.
3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct.
4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 425
Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of  [#permalink]

Show Tags

New post 30 May 2013, 15:40
1
12
I get the mechanics of flipping the signs when y is negative, but I guess I don't understand the logic.

If I take an absolute value of a number (always positive) then subtract from it an absolute value of a smaller number, which is negative how does that end up being X+Y? Are we looking just for the values of x and y, as opposed to the values of |x|-|y|?
General Discussion
Intern
Intern
avatar
Joined: 03 Sep 2009
Posts: 29
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 09 Sep 2009, 09:44
6
5
|x| - |y| = |x+y|
=> (|x| - |y|)^2 = |x+y|^2 = (x+y)^2
=> x^2 - 2|x||y| + y^2 = x^2 + 2xy + y^2
=> |xy| = -xy
because xy != 0 so xy <0
Ans: E


Pedros wrote:
if |x| - |y| = |x+y| and xy not equal zero , which of the following must be true ?

a) x-y> 0
b) x-y< 0
c) x+y> 0
d) xy>0
e) xy<0


this one is from manhattan, the answer is

I want to know wether there is a rule involved that i am missing, or an effective strategy to tackle that kind of questions

Thank you
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7201
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 09 Sep 2009, 10:35
1
there can be 4 instances:-
i)x +,y -....|x| - |y| = |x+y| => x-y=x-y
ii) both +... x-y=x+y.. not possible as xy not equal zero
iii) both -....x-y=-(x+y) .. not possible as xy not equal zero
iv) x-,y+...x-y=y-x......x=y..
therefore x and y are of different signs, when multiplied ,it should be -ive
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Intern
Intern
avatar
Joined: 29 Nov 2009
Posts: 25
Location: Bangalore - INDIA
Schools: Duke, NUS,Rutgers
WE 1: Health & Life Science
If |x| - |y| = |x+y| and xy does not equal to 0, which of  [#permalink]

Show Tags

New post Updated on: 04 Dec 2012, 01:11
1
5
If |x| - |y| = |x+y| and xy does not equal to 0, which of the following must be true?

A. x-y > 0
B. x-y < 0
C. x+y > 0
D. xy > 0
E. xy < 0

Originally posted by divakarbio7 on 13 Jul 2010, 22:00.
Last edited by Bunuel on 04 Dec 2012, 01:11, edited 1 time in total.
Renamed the topic and edited the question.
Intern
Intern
avatar
Joined: 09 Oct 2009
Posts: 42
Re: PS - Number system  [#permalink]

Show Tags

New post 15 Jul 2010, 04:12
2
divakarbio7 wrote:
if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0
B. x-y < 0
C. x+y >0
D. xy>0
E. xy<0


Also, if you're short on time, and since you know that xy is not 0, then you know it MUST be greater than or less than 0, so you can narrow your choices down to D or E.
Manager
Manager
avatar
Joined: 06 Apr 2010
Posts: 69
GMAT ToolKit User
Re: PS - Number system  [#permalink]

Show Tags

New post 01 Sep 2010, 04:03
1
1
SnehaC wrote:
divakarbio7 wrote:
if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0
B. x-y < 0
C. x+y >0
D. xy>0
E. xy<0


Also, if you're short on time, and since you know that xy is not 0, then you know it MUST be greater than or less than 0, so you can narrow your choices down to D or E.


the only way lxl - lyl can equal lx+yl is when one number is positive and one number is negative or both are zero. So then xy must be negative. I think I read if somewhere in Bunuel's post
Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 8792
Location: Pune, India
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 14 Jun 2011, 20:05
6
Pedros wrote:
if |x| - |y| = |x+y| and xy not equal zero , which of the following must be true ?

a) x-y> 0
b) x-y< 0
c) x+y> 0
d) xy>0
e) xy<0


this one is from manhattan, the answer is

I want to know wether there is a rule involved that i am missing, or an effective strategy to tackle that kind of questions

Thank you


mnpqxyzt has given a great solution above. I would like to add here that it is possible that it doesn't occur to you that you should square both sides. If you do get stuck with such a question, notice that it says 'which of the following MUST be true'. So as a back up, you can rely on plugging in numbers. If you get even one set of values for which the condition does not hold, the condition is not your answer.

|x| - |y| = |x+y|
First set of non-zero values that come to mind is x = 1, y = -1
This set satisfies only options (A) and (E).
Now, the set x = -1, y = 1 will also satisfy the given equation.
But this set will not satisfy option (A).
Hence answer (E).
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Manager
User avatar
Joined: 11 Feb 2011
Posts: 112
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 18 Jun 2011, 20:49
Krishma can you pls explain how to eliminate answer choices precisely.How can xy<0 not be true when one is negative and the other positive.
_________________

target:-810 out of 800!

Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 8792
Location: Pune, India
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 19 Jun 2011, 03:57
3
1
AnkitK wrote:
Krishma can you pls explain how to eliminate answer choices precisely.How can xy<0 not be true when one is negative and the other positive.


Ok.
Given: |x| - |y| = |x+y|
There are infinite set of values for x and y that satisfy this equation. Let us try one of them. Say x = 1, y = -1
a) x-y> 0 .......... 1 - (-1) > 0; 2 > 0; True
b) x-y< 0........... 1 - (-1) < 0; 2 < 0; Eliminate
c) x+y> 0........... 1 + (-1) > 0; 0 > 0; Eliminate
d) xy>0.............. 1 *(-1) > 0; -1 > 0; Eliminate
e) xy<0.............. 1 *(-1) < 0; -1 < 0; True

So I have two options that satisfy the assumed values of x and y.
We need to eliminate one of them.
They are
a) x-y> 0
e) xy<0

We see that x = 1, y = -1 satisfies both these inequalities. But option (a) is not symmetric i.e. if you interchange the values of x and y, it will not hold. That is, if x = -1 and y = 1, our original equation |x| - |y| = |x+y| is still satisfied but
a) x-y> 0 .............. (-1) - (1) > 0; -2>0; False. Eliminate
e) xy<0................. (-1)(1) < 0; True
Since option (e) still holds, it is the answer.

xy<0 is certainly true when one of them is negative and the other is positive.

Takeaways:

|x| + |y| = |x+y|
when x and y have the same signs - either both are positive or both are negative (or one or both of them are 0)

|x| - |y| = |x+y|
when x and y have opposite signs - one is positive, the other negative (or y is 0 or both are 0)
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Manager
User avatar
Status: On...
Joined: 16 Jan 2011
Posts: 163
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 21 Jun 2011, 09:25
VeritasPrepKarishma wrote:
AnkitK wrote:
Krishma can you pls explain how to eliminate answer choices precisely.How can xy<0 not be true when one is negative and the other positive.


Ok.
Given: |x| - |y| = |x+y|
There are infinite set of values for x and y that satisfy this equation. Let us try one of them. Say x = 1, y = -1
a) x-y> 0 .......... 1 - (-1) > 0; 2 > 0; True
b) x-y< 0........... 1 - (-1) < 0; 2 < 0; Eliminate
c) x+y> 0........... 1 + (-1) > 0; 0 > 0; Eliminate
d) xy>0.............. 1 *(-1) > 0; -1 > 0; Eliminate
e) xy<0.............. 1 *(-1) < 0; -1 < 0; True

So I have two options that satisfy the assumed values of x and y.
We need to eliminate one of them.
They are
a) x-y> 0
e) xy<0

We see that x = 1, y = -1 satisfies both these inequalities. But option (a) is not symmetric i.e. if you interchange the values of x and y, it will not hold. That is, if x = -1 and y = 1, our original equation |x| - |y| = |x+y| is still satisfied but
a) x-y> 0 .............. (-1) - (1) > 0; -2>0; False. Eliminate
e) xy<0................. (-1)(1) < 0; True
Since option (e) still holds, it is the answer.

xy<0 is certainly true when one of them is negative and the other is positive.

Takeaways:

|x| + |y| = |x+y|
when x and y have the same signs - either both are positive or both are negative (or one or both of them are 0)

|x| - |y| = |x+y|
when x and y have opposite signs - one is positive, the other negative (or y is 0 or both are 0)


Karishma, I think the 2nd takeaway has some extra condition missed out :

|x|-|y|=|x+y|
if and only if
1) Both have opposite signs and
2) |x| >= |y|

because
x, y, |x|-|y| , |x+y|
5 ,-6, -1,1
5 ,-5 , 0 , 0
5, -4, 1 , 1

so, |5| cannot be greater than |-6| for the condition to occur
_________________

Labor cost for typing this post >= Labor cost for pushing the Kudos Button
http://gmatclub.com/forum/kudos-what-are-they-and-why-we-have-them-94812.html

Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 8792
Location: Pune, India
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 21 Jun 2011, 10:42
krishp84 wrote:

Karishma, I think the 2nd takeaway has some extra condition missed out :

|x|-|y|=|x+y|
if and only if
1) Both have opposite signs and
2) |x| >= |y|

because
x, y, |x|-|y| , |x+y|
5 ,-6, -1,1
5 ,-5 , 0 , 0
5, -4, 1 , 1

so, |5| cannot be greater than |-6| for the condition to occur


The takeaway is that if x and y satisfy the condition |x|-|y|=|x+y|, then they must have opposite signs (or y is 0 or both are 0).

But, x and y having opposite signs is not sufficient to satisfy the condition |x|-|y|=|x+y|. As you said, in that case we will also need to check for their absolute values. (Good thinking, btw)
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Manager
avatar
Joined: 17 May 2010
Posts: 240
GMAT 1: 710 Q47 V40
Re: If |x| - |y| = |x+y| and xy not equal zero , which of the following  [#permalink]

Show Tags

New post 08 Jul 2011, 20:23
I plugged in numbers:

X = -6, Y =3 and X = 6, Y = -3. The answer is E.
_________________

If you like my post, consider giving me KUDOS!

Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 426
Concentration: Marketing, Finance
GPA: 3.23
GMAT ToolKit User
If |x| - |y| = |x+y| and xy does not equal to 0, which of the fo  [#permalink]

Show Tags

New post 03 Dec 2012, 19:27
3
When you see |x| or absolute values being tested in the GMAT, this means testing
(1) positive and negative signs
(2) zeroes
(3) nature of |x| and |y| against each other

Looking at the equation we know |x| - |y| = |x + y| where xy is not 0.
(1) We figure that |x| and |y| are non-zeroes
(2) We figure that |x| - |y| > 0. This means |x| > |y|

Now, we figure the signs of the two variables by lining up possibilities
(1) both negative ==> x=-5,y=-4 ==> |-5| - |-4| = |-9| FALSE
(2) both positive ==> x=5,y=4 ==> |5| - |4| = |5 + 4| FALSE
(3) x is positive, y is negative ==> |5| - |-4| = |5-4| TRUE
(4) y is positive, x is negative ==> |-5| - |4| = |-5+4| TRUE

Now, let's find the answer
A) x-y > 0 ==> -5-(-4) = -1 FALSE
E) xy <0 ==> This is exactly what we need. x and y have both different signs.

Answer: E
_________________

Impossible is nothing to God.

Intern
Intern
avatar
Joined: 22 Sep 2012
Posts: 9
Re: I need a strategy for this one.  [#permalink]

Show Tags

New post 03 Dec 2012, 23:46
I think the best strategy is to square up the equation.

|x| - |y| = |x+y|

> (|x| - |y|)^2 = (|x+y|)^2

> x^2 + y^2 - 2|x|.|y| = x^2 + y^2 + 2xy

> |x|.|y| = - xy

'Cause xy#0 and |x|.|y|>=0 --> xy<0
Intern
Intern
avatar
Status: Need some help
Joined: 27 Nov 2012
Posts: 8
Location: United States
Concentration: General Management, Human Resources
GMAT 1: 650 Q43 V37
GPA: 3.56
WE: Sales (Internet and New Media)
Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of  [#permalink]

Show Tags

New post 06 Jan 2013, 18:22
this is specific to Eden,

For your rule. what if X = -1 and Y = 2 then it would be l - 1 l - l 2 l = l -1 + 2 l ... 1 - 2 = 1 incorrect. is this correct?
Manager
Manager
avatar
Joined: 08 Dec 2012
Posts: 61
Location: United Kingdom
WE: Engineering (Consulting)
Re: PS - Number system  [#permalink]

Show Tags

New post 10 Feb 2013, 09:31
Bunuel wrote:
divakarbio7 wrote:
if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0
B. x-y < 0
C. x+y >0
D. xy>0
E. xy<0


\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios:
1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct.
2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct.
3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct.
4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.


Hi Bunuel,
I thought an absolute value of a product can never be a negative. Could you please explain in your equation how did you progress after getting this negative?
Manager
Manager
User avatar
Joined: 24 Jan 2013
Posts: 72
Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of  [#permalink]

Show Tags

New post 10 Feb 2013, 17:03
Basically, remember in these exercises to do square root in both sides to simplify: (|x+y|)^2 = (x+y)^2 or (|x|)^2 = x^2
And also remember that: |x||y|=|xy|

Therefore, with: -|x||y| = xy I would say: xy is always equal to something negative. Solution: E.
Intern
Intern
avatar
Joined: 17 Oct 2012
Posts: 15
Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of  [#permalink]

Show Tags

New post 12 Mar 2013, 04:44
Let us separate LHS and RHS :
1] |x| - |y| =0 It follows the curve x=y in 1st and 2nd quadrant

2] |x+y|=0. It follows he curve x=-y in 4rth and 2nd quadrant
The common set is 2nd quadrant which implies E with the exception of origin as xy<>0

Am I wrong in my interpretation ? But this is the way I visualize the problem.
GMAT Club Bot
Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of &nbs [#permalink] 12 Mar 2013, 04:44

Go to page    1   2   3    Next  [ 50 posts ] 

Display posts from previous: Sort by

If |x| - |y| = |x+y| and xy not equal zero , which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.