GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Oct 2018, 17:01

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If y>=0, What is the value of x?

Author Message
TAGS:

### Hide Tags

Manager
Joined: 03 Oct 2009
Posts: 52
If y>=0, What is the value of x?  [#permalink]

### Show Tags

21 Jan 2012, 08:57
2
39
00:00

Difficulty:

75% (hard)

Question Stats:

45% (01:39) correct 55% (02:13) wrong based on 635 sessions

### HideShow timer Statistics

If y >= 0, What is the value of x?

(1) |x-3| >= y
(2) |x-3| <= -y

I solved this way -

1) |x-3| >= y

x -3 >=y
x >= y + 3

or

3 - x >=y
x <= 3 - y

so y + 3 <= x <= 3 - y

if y is positive then the above condition is not possible as sum of two positives cant be less than difference of two positives. the other possibility is that y is zero and x = 3. hence sufficient?

2) |x-3| <= -y

x -3 <= -y
x <=3-y

or

3-x <=-y
x>=y+3

so 3-y >= x >= y+3, again since y >=0 , only possibility is that y = 0. hence x = 3. sufficient.

But the OA is different.
Math Expert
Joined: 02 Sep 2009
Posts: 50002

### Show Tags

21 Jan 2012, 09:23
18
7
Apex231 wrote:
if y >= 0, What is the value of x?
1) |x-3| >= y
2) |x-3| <= -y

I solved this way -

1) |x-3| >= y

x -3 >=y
x >= y + 3

or

3 - x >=y
x <= 3 - y

so y + 3 <= x <= 3 - y

if y is positive then the above condition is not possible as sum of two positives cant be less than difference of two positives. the other possibility is that y is zero and x = 3. hence sufficient?

2) |x-3| <= -y

x -3 <= -y
x <=3-y

or

3-x <=-y
x>=y+3

so 3-y >= x >= y+3, again since y >=0 , only possibility is that y = 0. hence x = 3. sufficient.

But the OA is different.

If $$y\geq{0}$$, what is the value of [b]x?[/b]

(1) $$|x - 3|\geq{y}$$. As given that $$y$$ is non negative value then $$|x - 3|$$ is more than (or equal to) some non negative value, (we could say the same ourselves as absolute value in our case ($$|x - 3|$$) is never negative). So we can not determine single numerical value of $$x$$. Not sufficient.

Or another way: to check $$|x - 3|\geq{y}\geq{0}$$ is sufficient or not just plug numbers:
A. $$x=5$$, $$y=1>0$$, and B. $$x=8$$, $$y=2>0$$: you'll see that both fits in $$|x - 3|>=y$$, $$y\geq{0}$$.

Or another way:
$$|x - 3|\geq{y}$$ means that:

$$x - 3\geq{y}\geq{0}$$ when $$x-3>0$$ --> $$x>3$$

OR (not and)
$$-x+3\geq{y}\geq{0}$$ when $$x-3<0$$ --> $$x<3$$

Generally speaking $$|x - 3|\geq{y}\geq{0}$$ means that $$|x - 3|$$, an absolute value, is not negative. So, there's no way you'll get a unique value for $$x$$. INSUFFICIENT.

(2) $$|x-3|\leq{-y}$$. Now, as $$|x-3|$$ is never negative ($$0\leq{|x-3|}$$) then $$0\leq{-y}$$ --> $$y\leq{0}$$ BUT stem says that $$y\geq{0}$$ thus $$y=0$$. $$|x-3|\leq{0}$$ --> $$|x-3|=0=y$$ (as absolute value, in our case |x-3|, can not be less than zero) --> $$x-3=0$$ --> $$x=3$$. SUFFICIENT

In other words:
$$-y$$ is zero or less, and the absolute value ($$|x-3|$$) must be at zero or below this value. But absolute value (in this case $$|x-3|$$) can not be less than zero, so it must be $$0$$.

There is a following problem with your solution:
If $$x<3$$ --> $$-(x-3)\geq{y}$$ --> $$3-y\geq{x}$$;
OR:
If $$x\geq{3}$$ --> $$(x-3)\geq{y}$$ --> $$x\geq{3+y}$$;

But you can not combine these inequalities and write: $$3+y\leq{x}\leq{3-y}$$ as they are OR scenarios not AND scenarios (meaning that depending on the value of x we'll have either the first one or the second one).

Also discussed here: if-y-geq-0-what-is-the-value-of-x-1-x-3-geq-y-91640.html

Hope it helps..
_________________
##### General Discussion
Director
Joined: 29 Nov 2012
Posts: 775
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

02 Jul 2013, 00:54
What difficulty level would this be closer to 650 or above that? BTW Great Explanation as always!
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios http://gmatclub.com/forum/gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Math Expert
Joined: 02 Sep 2009
Posts: 50002
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

02 Jul 2013, 00:59
1
fozzzy wrote:
What difficulty level would this be closer to 650 or above that? BTW Great Explanation as always!

The question involves 2 variables, inequalities and modulus, plus it's quite tricky, so I'd say it's above 650, more like 700.
_________________
Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

08 Jul 2013, 17:14
If y >= 0, What is the value of x?

(1) |x-3| >= y
if y>=0 then |x-3| must be greater than y.
|x-3| >= y
x>=3:
|x-3| >= y
x-3 >=y
x>=y+3
There is no need to test for a negative case here as we are told that |x-3| is greater than or equal to a positive number. Still, we don't know anything about x except that it must be greater than or equal to 3.
INSUFFICIENT

(2) |x-3| <= -y
This means that x-3 is negative, so:
-(x-3)<=-y
3-x<=-y
-(3-x)<=y

Bunuel, I get your explanation, but I have to be honest, I don't think I would have any idea on the test to employ the explanation you got as opposed to the one I started with. Can you shed some light on to how you utilized the particular solution you used (i.e. what signs should I look for to know to solve this problem this way?)

Thanks!
Intern
Joined: 30 May 2012
Posts: 19
Concentration: Finance, Strategy
GMAT 1: 730 Q49 V41
GPA: 3.39
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

08 Jul 2013, 18:38
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y
if y>=0 then |x-3| must be greater than y.
|x-3| >= y
x>=3:
|x-3| >= y
x-3 >=y
x>=y+3
There is no need to test for a negative case here as we are told that |x-3| is greater than or equal to a positive number. Still, we don't know anything about x except that it must be greater than or equal to 3.
INSUFFICIENT

We're not told |x-3| is greater than or equal to a positive number. We're told that y is either 0 or a positive number and that |x-3| >= y. So |x-3| can equal 0. But since |anything|>=0 this doesn't tell us anything more than we already know. In other words, the absolute value of any number is not negative and 1 simply states that |x-3| is not negative.

Quote:
(2) |x-3| <= -y
This means that x-3 is negative, so:
-(x-3)<=-y
3-x<=-y
-(3-x)<=y

|x-3|<=-y does not mean that x-3 is negative. The key to the problem is to remember that the absolute value of anything is not negative. The difference in 2 is that, since we know y>=0, we know that -y <=0. But since 2 states that |x-3|<=-y and it is a fact that the absolute value of anything is not negative, -y=0 and so y=0. Then it's clear that |x-3|=0 and so x=3. Anytime absolute value shows up the trick may likely be remembering the basic fact that absolute value is not negative but that not negative is not the same as positive. There is a possibility of 0.
Retired Moderator
Joined: 16 Jun 2012
Posts: 1036
Location: United States
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

09 Jul 2013, 02:03
WholeLottaLove wrote:
(2) |x-3| <= -y
This means that x-3 is negative, so:
-(x-3)<=-y
3-x<=-y
-(3-x)<=y

Dear WholeLottaLove

Your point "This means that x-3 is negative" is incorrect.

General theory is: $$|X| <= a$$, ==> $$-a <= X <= a$$
So, X does not have to be negative. X is between -a and a.
For example: $$|x -3| <= 9$$ ==> $$-9 <= (x -3) <=9$$

The KEY point is absolute value cannot be negative, thus the smallest value of $$|x - 3|$$ is 0.
Because $$-y <= 0$$ ==> $$|x-3|$$ must be 0 ==> x = 3.

Hope it helps.
_________________

Please +1 KUDO if my post helps. Thank you.

"Designing cars consumes you; it has a hold on your spirit which is incredibly powerful. It's not something you can do part time, you have do it with all your heart and soul or you're going to get it wrong."

Chris Bangle - Former BMW Chief of Design.

Intern
Joined: 30 May 2012
Posts: 19
Concentration: Finance, Strategy
GMAT 1: 730 Q49 V41
GPA: 3.39
Re: If y>=0, What is the value of x? (1) |x-3|>=y (2) |x-3|<=-y  [#permalink]

### Show Tags

09 Jul 2013, 14:05

First number line: y>=0
Second: From properties of absolute value, |x-3|>=0 is true no matter what x is.
Third: (2) tells us that |x-3|<=-y. We know nothing about y other than y>=0. Therefore |x-3|<=-y only tells us that |x-3|<=0.
Fourth: Since |x-3|<=0 AND |x-3|>=0, we now know the exact value of |x-3|. In the diagram it is the point on the number line that is both <=0 and >=0. The only value for which that is true is 0. So |x-3|=0. From there you know that x-3=0 and so x=3.

WholeLottaLove wrote:
Hmmmm...I am still quite lost on your explanation for 2)

Observer wrote:
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y
if y>=0 then |x-3| must be greater than y.
|x-3| >= y
x>=3:
|x-3| >= y
x-3 >=y
x>=y+3
There is no need to test for a negative case here as we are told that |x-3| is greater than or equal to a positive number. Still, we don't know anything about x except that it must be greater than or equal to 3.
INSUFFICIENT

We're not told |x-3| is greater than or equal to a positive number. We're told that y is either 0 or a positive number and that |x-3| >= y. So |x-3| can equal 0. But since |anything|>=0 this doesn't tell us anything more than we already know. In other words, the absolute value of any number is not negative and 1 simply states that |x-3| is not negative.

Quote:
(2) |x-3| <= -y
This means that x-3 is negative, so:
-(x-3)<=-y
3-x<=-y
-(3-x)<=y

|x-3|<=-y does not mean that x-3 is negative. The key to the problem is to remember that the absolute value of anything is not negative. The difference in 2 is that, since we know y>=0, we know that -y <=0. But since 2 states that |x-3|<=-y and it is a fact that the absolute value of anything is not negative, -y=0 and so y=0. Then it's clear that |x-3|=0 and so x=3. Anytime absolute value shows up the trick may likely be remembering the basic fact that absolute value is not negative but that not negative is not the same as positive. There is a possibility of 0.
Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

10 Jul 2013, 13:43
If y >= 0, What is the value of x?

(1) |x-3| >= y
We are told that |x-3| ≥ y but all we know is that y is a positive # greater than or equal to zero. Therefore, all we know is that |x-3| is greater than or equal to zero and x could be an infinite number of possibilities.

(2) |x-3| <= -y

(I am having real difficulty understanding the rationale for (2) could someone explain it to me? (preferably like they would to a 5th grader )

Thanks!
Retired Moderator
Joined: 16 Jun 2012
Posts: 1036
Location: United States
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

10 Jul 2013, 14:58
2
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y
We are told that |x-3| ≥ y but all we know is that y is a positive # greater than or equal to zero. Therefore, all we know is that |x-3| is greater than or equal to zero and x could be an infinite number of possibilities.

(2) |x-3| <= -y

(I am having real difficulty understanding the rationale for (2) could someone explain it to me? (preferably like they would to a 5th grader )

Thanks!

Hi WholeLottaLove

The important property concerning absolute value inequalities is:
|a| <= b <--> -b <= a <=b
[a is in the middle of -b and b, inclusive]

Apply to statement (2)
|x - 3| <= -y
<--> -(-y) <= (x-3) <= -y,
<--> y <= (x-3) <= -y

We know y is 0 or positive, -y is 0 or negative.
Because there is not any number that is both negative and positive.Thus, there is ONLY one number that is both >= y AND <= -y. That is zero.
Therefore, (x-3) must be zero. ==> x = 3

Hope it's clear.
_________________

Please +1 KUDO if my post helps. Thank you.

"Designing cars consumes you; it has a hold on your spirit which is incredibly powerful. It's not something you can do part time, you have do it with all your heart and soul or you're going to get it wrong."

Chris Bangle - Former BMW Chief of Design.

Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 11:18
pqhai wrote:
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y
We are told that |x-3| ≥ y but all we know is that y is a positive # greater than or equal to zero. Therefore, all we know is that |x-3| is greater than or equal to zero and x could be an infinite number of possibilities.

(2) |x-3| <= -y

(I am having real difficulty understanding the rationale for (2) could someone explain it to me? (preferably like they would to a 5th grader )

Thanks!

Hi WholeLottaLove

The important property concerning absolute value inequalities is:
|a| <= b <--> -b <= a <=b
[a is in the middle of -b and b, inclusive]

Apply to statement (2)
|x - 3| <= -y
<--> -(-y) <= (x-3) <= -y,
<--> y <= (x-3) <= -y

We know y is 0 or positive, -y is 0 or negative.
Because there is not any number that is both negative and positive.Thus, there is ONLY one number that is both >= y AND <= -y. That is zero.
Therefore, (x-3) must be zero. ==> x = 3

Hope it's clear.

Just to be clear (because sometimes I can be a bit dense!) we know that y is zero or negative because it is less than or equal to (x-3) which is less than or equal to -y, correct? In other words, y has to be less than or equal to zero because it is less than or equal to a negative number. The intersection of -y and y>= 0 is zero, right?

Also, do you know of any similar problems that I could practice on?

Thanks!
Retired Moderator
Joined: 16 Jun 2012
Posts: 1036
Location: United States
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 13:23
1
WholeLottaLove wrote:
pqhai wrote:
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y
We are told that |x-3| ≥ y but all we know is that y is a positive # greater than or equal to zero. Therefore, all we know is that |x-3| is greater than or equal to zero and x could be an infinite number of possibilities.

(2) |x-3| <= -y

(I am having real difficulty understanding the rationale for (2) could someone explain it to me? (preferably like they would to a 5th grader )

Thanks!

Hi WholeLottaLove

The important property concerning absolute value inequalities is:
|a| <= b <--> -b <= a <=b
[a is in the middle of -b and b, inclusive]

Apply to statement (2)
|x - 3| <= -y
<--> -(-y) <= (x-3) <= -y,
<--> y <= (x-3) <= -y

We know y is 0 or positive, -y is 0 or negative.
Because there is not any number that is both negative and positive.Thus, there is ONLY one number that is both >= y AND <= -y. That is zero.
Therefore, (x-3) must be zero. ==> x = 3

Hope it's clear.

Just to be clear (because sometimes I can be a bit dense!) we know that y is zero or negative because it is less than or equal to (x-3) which is less than or equal to -y, correct? In other words, y has to be less than or equal to zero because it is less than or equal to a negative number. The intersection of -y and y>= 0 is zero, right?

Also, do you know of any similar problems that I could practice on?

Thanks!

Hi WholeLottaLove

Yes, you're correct. The key point is -y <= 0, and according to the inequality: y <= (x-3) <= -y
So y <= -y. But y >= 0. Thus, y must be zero so -y = y = 0.

I would like to clarify a bit. My post above is to explain why the intersection must be zero in the case |A| <= zero or negative number.
The KEY of this question is -y <= 0 (a zero or negative number), and the smallest value |x-3| (absolute value) is zero, so (x-3) must be zero.
If you see a "regular" question like: |x-3| <= 9 (a positive number). The range of (x-3) is from -9 to 9.

Hope it's more clear.

PS: If I know more similar questions, I will pm you.
_________________

Please +1 KUDO if my post helps. Thank you.

"Designing cars consumes you; it has a hold on your spirit which is incredibly powerful. It's not something you can do part time, you have do it with all your heart and soul or you're going to get it wrong."

Chris Bangle - Former BMW Chief of Design.

Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 14:00
Thank you for the explanation. I think I understand it better!

<---------------------------------------------------------y<=0
-10 0 10
y>=0--------------------------------------------------------------->

Along those lines?

Hi WholeLottaLove

Yes, you're correct. The key point is -y <= 0, and according to the inequality: y <= (x-3) <= -y
So y <= -y. But y >= 0. Thus, y must be zero so -y = y = 0.

I would like to clarify a bit. My post above is to explain why the intersection must be zero in the case |A| <= zero or negative number.
The KEY of this question is -y <= 0 (a zero or negative number), and the smallest value |x-3| (absolute value) is zero, so (x-3) must be zero.
If you see a "regular" question like: |x-3| <= 9 (a positive number). The range of (x-3) is from -9 to 9.

Hope it's more clear.

PS: If I know more similar questions, I will pm you.[/quote]
Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 14:05
So, (as you said) if y were 9 then -y = -9

|x-3| can be at the very least, 0 (as it is an absolute value) so if we are told that |x-3| is less than negative y, then y can be at the very most zero (because obviously -y cannot be a positive number) so if y is a negative number and it is greater than something that can be at least zero, the only option is for y to be zero (|0| <= -0)
Senior Manager
Joined: 13 May 2013
Posts: 429
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 14:14
1
If y >= 0, What is the value of x?

(1) |x-3| >= y

If y>=0 then |x-3| >= to any positive number. X cannot be determined.
INSUFFICIENT

(2) |x-3| <= -y

So, |x-3| can never be negative which means that it cannot be less than a negative number. For |x-3| <= -y to be true, y must be negative:
|x-3| <= -y
|x-3| <= -(-y)
|x-3| <= (y)

It is possible for |x-3| to be less than or equal to y.

So, y is less than or equal to zero but we are also told that y is greater than or equal to zero, therefore the intersection is at 0.

I think I understand!!
Retired Moderator
Joined: 16 Jun 2012
Posts: 1036
Location: United States
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

11 Jul 2013, 15:02
2
1
WholeLottaLove wrote:
If y >= 0, What is the value of x?

(1) |x-3| >= y

If y>=0 then |x-3| >= to any positive number. X cannot be determined.
INSUFFICIENT

(2) |x-3| <= -y

So, |x-3| can never be negative which means that it cannot be less than a negative number. For |x-3| <= -y to be true, y must be negative:
YOU"RE CORRECT. THAT'S THE KEY.

|x-3| <= -y
|x-3| <= -(-y)
|x-3| <= (y)

It is possible for |x-3| to be less than or equal to y.

So, y is less than or equal to zero but we are also told that y is greater than or equal to zero, therefore the intersection is at 0.

I think I understand!!

Cheer!
_________________

Please +1 KUDO if my post helps. Thank you.

"Designing cars consumes you; it has a hold on your spirit which is incredibly powerful. It's not something you can do part time, you have do it with all your heart and soul or you're going to get it wrong."

Chris Bangle - Former BMW Chief of Design.

Manager
Joined: 07 May 2015
Posts: 87
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

28 Feb 2016, 11:16
Hi there,

Why are we chopping off the equal to part in below:

x−3≥y≥0x−3≥y≥0 when x−3>0x−3>0 --> x>3x>3

OR (not and)
−x+3≥y≥0−x+3≥y≥0 when x−3<0x−3<0 --> x<3

Bunuel wrote:
Apex231 wrote:
if y >= 0, What is the value of x?
1) |x-3| >= y
2) |x-3| <= -y

I solved this way -

1) |x-3| >= y

x -3 >=y
x >= y + 3

or

3 - x >=y
x <= 3 - y

so y + 3 <= x <= 3 - y

if y is positive then the above condition is not possible as sum of two positives cant be less than difference of two positives. the other possibility is that y is zero and x = 3. hence sufficient?

2) |x-3| <= -y

x -3 <= -y
x <=3-y

or

3-x <=-y
x>=y+3

so 3-y >= x >= y+3, again since y >=0 , only possibility is that y = 0. hence x = 3. sufficient.

But the OA is different.

If $$y\geq{0}$$, what is the value of [b]x?[/b]

(1) $$|x - 3|\geq{y}$$. As given that $$y$$ is non negative value then $$|x - 3|$$ is more than (or equal to) some non negative value, (we could say the same ourselves as absolute value in our case ($$|x - 3|$$) is never negative). So we can not determine single numerical value of $$x$$. Not sufficient.

Or another way: to check $$|x - 3|\geq{y}\geq{0}$$ is sufficient or not just plug numbers:
A. $$x=5$$, $$y=1>0$$, and B. $$x=8$$, $$y=2>0$$: you'll see that both fits in $$|x - 3|>=y$$, $$y\geq{0}$$.

Or another way:
$$|x - 3|\geq{y}$$ means that:

$$x - 3\geq{y}\geq{0}$$ when $$x-3>0$$ --> $$x>3$$

OR (not and)
$$-x+3\geq{y}\geq{0}$$ when $$x-3<0$$ --> $$x<3$$

Generally speaking $$|x - 3|\geq{y}\geq{0}$$ means that $$|x - 3|$$, an absolute value, is not negative. So, there's no way you'll get a unique value for $$x$$. INSUFFICIENT.

(2) $$|x-3|\leq{-y}$$. Now, as $$|x-3|$$ is never negative ($$0\leq{|x-3|}$$) then $$0\leq{-y}$$ --> $$y\leq{0}$$ BUT stem says that $$y\geq{0}$$ thus $$y=0$$. $$|x-3|\leq{0}$$ --> $$|x-3|=0=y$$ (as absolute value, in our case |x-3|, can not be less than zero) --> $$x-3=0$$ --> $$x=3$$. SUFFICIENT

In other words:
$$-y$$ is zero or less, and the absolute value ($$|x-3|$$) must be at zero or below this value. But absolute value (in this case $$|x-3|$$) can not be less than zero, so it must be $$0$$.

There is a following problem with your solution:
If $$x<3$$ --> $$-(x-3)\geq{y}$$ --> $$3-y\geq{x}$$;
OR:
If $$x\geq{3}$$ --> $$(x-3)\geq{y}$$ --> $$x\geq{3+y}$$;

But you can not combine these inequalities and write: $$3+y\leq{x}\leq{3-y}$$ as they are OR scenarios not AND scenarios (meaning that depending on the value of x we'll have either the first one or the second one).

Also discussed here: if-y-geq-0-what-is-the-value-of-x-1-x-3-geq-y-91640.html

Hope it helps..
Intern
Joined: 05 Jun 2015
Posts: 25
Location: Viet Nam
GMAT 1: 740 Q49 V41
GPA: 3.66
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

06 Mar 2016, 19:57
Bunuel wrote:

There is a following problem with your solution:
If $$x<3$$ --> $$-(x-3)\geq{y}$$ --> $$3-y\geq{x}$$;
OR:
If $$x\geq{3}$$ --> $$(x-3)\geq{y}$$ --> $$x\geq{3+y}$$;

But you can not combine these inequalities and write: $$3+y\leq{x}\leq{3-y}$$ as they are OR scenarios not AND scenarios (meaning that depending on the value of x we'll have either the first one or the second one).

Also discussed here: if-y-geq-0-what-is-the-value-of-x-1-x-3-geq-y-91640.html

Hope it helps..

Hi Bunuel,

I understand the OR scenario you mentioned above. However, what if the statement reads $$|x-3|\leq{y}$$? Then we can have $$3-y\leq{x}\leq{3+y}$$, can't we? So here we have the AND scenario. Is that right?

And if I am correct, how can we solve the above inequalities, given that $$y\geq{0}$$?

Thank you very much!
Math Expert
Joined: 02 Aug 2009
Posts: 6961
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

06 Mar 2016, 20:51
1
truongynhi wrote:
Bunuel wrote:

There is a following problem with your solution:
If $$x<3$$ --> $$-(x-3)\geq{y}$$ --> $$3-y\geq{x}$$;
OR:
If $$x\geq{3}$$ --> $$(x-3)\geq{y}$$ --> $$x\geq{3+y}$$;

But you can not combine these inequalities and write: $$3+y\leq{x}\leq{3-y}$$ as they are OR scenarios not AND scenarios (meaning that depending on the value of x we'll have either the first one or the second one).

Also discussed here: if-y-geq-0-what-is-the-value-of-x-1-x-3-geq-y-91640.html

Hope it helps..

Hi Bunuel,

I understand the OR scenario you mentioned above. However, what if the statement reads $$|x-3|\leq{y}$$? Then we can have $$3-y\leq{x}\leq{3+y}$$, can't we? So here we have the AND scenario. Is that right?

And if I am correct, how can we solve the above inequalities, given that $$y\geq{0}$$?

Thank you very much!

Hi,
this too is OR scenario,
because $$3-y\leq{x}$$ and $${x}\leq{3+y}$$ are dependent on different set of values of x..
$$3-y\leq{x}$$ is when $$x<3$$..
and $${x}\leq{3+y}$$ is when $$x\geq{3}$$..
Example of AND is
when we have two eqs in x, and not dependent on each other..
say x<3.. and x+2>1..
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html

GMAT online Tutor

Intern
Joined: 05 Jun 2015
Posts: 25
Location: Viet Nam
GMAT 1: 740 Q49 V41
GPA: 3.66
Re: If y>=0, What is the value of x?  [#permalink]

### Show Tags

06 Mar 2016, 22:08
Hi chetan2u,

Thank you for the prompt reply. But I still have a doubt.

Take the inequation $$x^2<4$$ for example. We then have $$|x|<2$$, which means $$-2<x<2$$. What I understand is that x must be greater than -2 AND less than 2 for the inequalitiy to hold. So I think this is an AND scenario.

If, however, $$x^2>4$$, then $$x<-2$$ OR $$x>2$$. This is clearly an OR scenario. Here OR makes sense to me.

My inequality skill is pretty rusty. Thank you for bearing with me. I very appreciate your help!
Re: If y>=0, What is the value of x? &nbs [#permalink] 06 Mar 2016, 22:08

Go to page    1   2    Next  [ 23 posts ]

Display posts from previous: Sort by

# If y>=0, What is the value of x?

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.