Last visit was: 19 Nov 2025, 07:43 It is currently 19 Nov 2025, 07:43
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
shekar123
Joined: 27 Sep 2009
Last visit: 16 Feb 2012
Posts: 29
Own Kudos:
430
 [45]
Given Kudos: 4
Posts: 29
Kudos: 430
 [45]
2
Kudos
Add Kudos
43
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [18]
9
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
General Discussion
User avatar
Hussain15
User avatar
Retired Moderator
Joined: 18 Jun 2009
Last visit: 07 Jul 2021
Posts: 1,076
Own Kudos:
Given Kudos: 157
Status:The last round
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
GMAT 1: 680 Q48 V34
Posts: 1,076
Kudos: 3,476
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
shekar123
Joined: 27 Sep 2009
Last visit: 16 Feb 2012
Posts: 29
Own Kudos:
430
 [1]
Given Kudos: 4
Posts: 29
Kudos: 430
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
shekar123
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.
(2) x = 4y

Given: \(-8<y<0\).
Q: is x greater than the average of -8 and x? Or: is \(x>\frac{-8+y}{2}\)? --> \(2x>-8+y\)?

-----{-8}-----{average}-----{y} (average of y and -8 is halfway between y and -8).

(1) On the number line, x is closer to -8 than it is to y.

Now, as \(x\) is closer to \(-8\) than it (\(x\)) is to \(y\), then \(x\) is either in the green area, so less than average OR in the red area, so also less than average. Answer to the question is NO.

Sufficient.

(2) \(x=4y\) --> is \(2x>-8+y\)? --> is \(8y>-8+y\)? --> is \(y>-\frac{8}{7}\)? We don't now that. Not sufficient. (we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)

Answer: A.

Similar question: number-line-problem-22709.html#p719532

Hope it helps.


I still can't get option (2)...:(
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,253
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shekar123
Bunuel
shekar123
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.
(2) x = 4y

Given: \(-8<y<0\).
Q: is x greater than the average of -8 and x? Or: is \(x>\frac{-8+y}{2}\)? --> \(2x>-8+y\)?

-----{-8}-----{average}-----{y} (average of y and -8 is halfway between y and -8).

(1) On the number line, x is closer to -8 than it is to y.

Now, as \(x\) is closer to \(-8\) than it (\(x\)) is to \(y\), then \(x\) is either in the green area, so less than average OR in the red area, so also less than average. Answer to the question is NO.

Sufficient.

(2) \(x=4y\) --> is \(2x>-8+y\)? --> is \(8y>-8+y\)? --> is \(y>-\frac{8}{7}\)? We don't now that. Not sufficient. (we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)

Answer: A.

Similar question: number-line-problem-22709.html#p719532

Hope it helps.


I still can't get option (2)...:(

Stem: \(-8<y<0\).

Statement:(2) \(x=4y\)

Based on the above 2 informations can we answer whether: \(2x>-8+y\)? No.
If \(y=-1>-8\), then \(x=-4\) and \(2x=-8>-8+y=-8-4=-12\) - answer to the question is YES;
If \(y=-2>-8\), then \(x=-8\) and \(2x=-16<-8+y=-8-2=-10\) - answer to the question is NO.

Two different answers to the question is \(2x>-8+y\)?

Hope it's clear.
User avatar
shekar123
Joined: 27 Sep 2009
Last visit: 16 Feb 2012
Posts: 29
Own Kudos:
Given Kudos: 4
Posts: 29
Kudos: 430
Kudos
Add Kudos
Bookmarks
Bookmark this Post
great explanation.


Statement:(2) \(x=4y\)

Based on the above 2 informations can we answer whether: \(2x>-8+y\)? No.
If \(y=-1>-8\), then \(x=-4\) and \(2x=-8>-8+y=-8-4=-12\) - answer to the question is YES;
If \(y=-2>-8\), then \(x=-8\) and \(2x=-16<-8+y=-8-2=-10\) - answer to the question is NO.

Two different answers to the question is \(2x>-8+y\)?
great explanation
Hope it's clear.[/quote]
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
Given Kudos: 25
Location: London
Products:
Posts: 609
Kudos: 3,191
Kudos
Add Kudos
Bookmarks
Bookmark this Post
zisis
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.

(2) x = 4y

A is enough, if x is closer to -8 than y and y>-8 then x will be less than the average of -8 and y (answering NO to the question)

B is not enough. Eg. y=-0.5, x=-2, avg=-4.25 x is greater; y=-6, x=-24, avg=-16 x is lesser

Hence, ans is A
User avatar
vigneshpandi
Joined: 23 Sep 2009
Last visit: 01 Jun 2011
Posts: 71
Own Kudos:
Given Kudos: 37
Posts: 71
Kudos: 620
Kudos
Add Kudos
Bookmarks
Bookmark this Post
zisis
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.

(2) x = 4y

I just substituted numbers in each of the choices and arrived at A. But it took me 3:05 mins to solve this...I am always taking extra time in solving such problems...ANyone please suggest a short cut in solving such type of problems...Always when I substitute values in these kind of problems I take a minimum of 3 minutes.. :(
Any suggestion is greatly appreciated.

Choice (A)
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
Given Kudos: 25
Location: London
Products:
Posts: 609
Kudos: 3,191
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vigneshpandi

I just substituted numbers in each of the choices and arrived at A. But it took me 3:05 mins to solve this...I am always taking extra time in solving such problems...ANyone please suggest a short cut in solving such type of problems...Always when I substitute values in these kind of problems I take a minimum of 3 minutes.. :(
Any suggestion is greatly appreciated.

Choice (A)

In this question, if you draw a number line, most of the answer will just come to you as obvious
User avatar
vigneshpandi
Joined: 23 Sep 2009
Last visit: 01 Jun 2011
Posts: 71
Own Kudos:
Given Kudos: 37
Posts: 71
Kudos: 620
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you guys..I will use it going forward...
avatar
reg
Joined: 12 Dec 2010
Last visit: 17 Jan 2011
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
'A' can't be the correct answer -

given --> -8<y<0

so , when y =-1 , [-1+(-8)] /2=-4.5
when y=-7, [-7+(-8)]/2= -7.5

now if x is closer to -8 means , x<-4.5

but there is no connection between values of X and Y [ie, value of x is independent of Y] so,
if x=-4.6 then , x>-7.5 [where -7.5 is one of the values of average of y and -8]
if x=-7.8 then , x<-7.5 [where -7.5 is one of the values of average of y and -8]

but if x=4y is also considered then x will always be greater than average of y and -8

so correct ans must be C .

please correct me if i'm wrong
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
Kudos
Add Kudos
Bookmarks
Bookmark this Post
reg
'A' can't be the correct answer -

given --> -8<y<0

so , when y =-1 , [-1+(-8)] /2=-4.5
when y=-7, [-7+(-8)]/2= -7.5

now if x is closer to -8 means , x<-4.5

but there is no connection between values of X and Y [ie, value of x is independent of Y] so,
if x=-4.6 then , x>-7.5 [where -7.5 is one of the values of average of y and -8]
if x=-7.8 then , x<-7.5 [where -7.5 is one of the values of average of y and -8]

but if x=4y is also considered then x will always be greater than average of y and -8

so correct ans must be C .

please correct me if i'm wrong

OA (official answer) for this question is A. not C.

If you consider y=-7 so that the average of -8 and y to be -7.5 then x=-4.6 is not a proper value for x as (1) says that x is closer to -8 than it (x) is to y.

Refer to the correct solutions above.
User avatar
russ9
Joined: 15 Aug 2013
Last visit: 20 Apr 2015
Posts: 174
Own Kudos:
Given Kudos: 23
Posts: 174
Kudos: 400
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
shekar123
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.
(2) x = 4y

Given: \(-8<y<0\).
Q: is x greater than the average of -8 and x? Or: is \(x>\frac{-8+y}{2}\)? --> \(2x>-8+y\)?

-----{-8}-----{average}-----{y} (average of y and -8 is halfway between y and -8).

(1) On the number line, x is closer to -8 than it is to y.

Now, as \(x\) is closer to \(-8\) than it (\(x\)) is to \(y\), then \(x\) is either in the green area, so less than average OR in the red area, so also less than average. Answer to the question is NO.

Sufficient.

(2) \(x=4y\) --> is \(2x>-8+y\)? --> is \(8y>-8+y\)? --> is \(y>-\frac{8}{7}\)? We don't now that. Not sufficient. (we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)

Answer: A.

Similar question: number-line-problem-22709.html#p719532

Hope it helps.

Hi Bunuel,

What exactly do you mean by "(we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)"

I can follow everything minus that. Thanks!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
Kudos
Add Kudos
Bookmarks
Bookmark this Post
russ9
Bunuel
shekar123
If y is a negative number greater than -8, is x greater than the average (arithmetic mean) of y and -8 ?

(1) On the number line, x is closer to -8 than it is to y.
(2) x = 4y

Given: \(-8<y<0\).
Q: is x greater than the average of -8 and x? Or: is \(x>\frac{-8+y}{2}\)? --> \(2x>-8+y\)?

-----{-8}-----{average}-----{y} (average of y and -8 is halfway between y and -8).

(1) On the number line, x is closer to -8 than it is to y.

Now, as \(x\) is closer to \(-8\) than it (\(x\)) is to \(y\), then \(x\) is either in the green area, so less than average OR in the red area, so also less than average. Answer to the question is NO.

Sufficient.

(2) \(x=4y\) --> is \(2x>-8+y\)? --> is \(8y>-8+y\)? --> is \(y>-\frac{8}{7}\)? We don't now that. Not sufficient. (we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)

Answer: A.

Similar question: number-line-problem-22709.html#p719532

Hope it helps.

Hi Bunuel,

What exactly do you mean by "(we've gotten that if \(0>y>-\frac{8}{7}\) (for instance if \(y=-1\)), then the answer to the question is YES, but if \(y\leq{-\frac{8}{7}}\) (for instance if \(y=-2\)), then the answer to the question is NO.)"

I can follow everything minus that. Thanks!
'
For (2) we know that \(x=4y\). After substituting this into the question the question becomes "is \(y>-\frac{8}{7}\)?" We cannot asnwer this, so the statement is insufficient.

Hope it's clear.
User avatar
rohit8865
Joined: 05 Mar 2015
Last visit: 18 Nov 2025
Posts: 812
Own Kudos:
Given Kudos: 45
Products:
Posts: 812
Kudos: 979
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
reg
'A' can't be the correct answer -

given --> -8<y<0

so , when y =-1 , [-1+(-8)] /2=-4.5
when y=-7, [-7+(-8)]/2= -7.5

now if x is closer to -8 means , x<-4.5

but there is no connection between values of X and Y [ie, value of x is independent of Y] so,
if x=-4.6 then , x>-7.5 [where -7.5 is one of the values of average of y and -8]
if x=-7.8 then , x<-7.5 [where -7.5 is one of the values of average of y and -8]

but if x=4y is also considered then x will always be greater than average of y and -8

so correct ans must be C .

please correct me if i'm wrong

OA (official answer) for this question is A. not C.

.

how could Ans be A??

if x=-7 and y=-6.5 then Avg. = -8-6.5/2=-7.25 and x> avg.
But if x=-7 and y=-1 then avg. = -8-1/2=-4.5 thus x<avg.

Please suggest me.

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rohit8865
Bunuel
reg
'A' can't be the correct answer -

given --> -8<y<0

so , when y =-1 , [-1+(-8)] /2=-4.5
when y=-7, [-7+(-8)]/2= -7.5

now if x is closer to -8 means , x<-4.5

but there is no connection between values of X and Y [ie, value of x is independent of Y] so,
if x=-4.6 then , x>-7.5 [where -7.5 is one of the values of average of y and -8]
if x=-7.8 then , x<-7.5 [where -7.5 is one of the values of average of y and -8]

but if x=4y is also considered then x will always be greater than average of y and -8

so correct ans must be C .

please correct me if i'm wrong

OA (official answer) for this question is A. not C.

.

how could Ans be A??

if x=-7 and y=-6.5 then Avg. = -8-6.5/2=-7.25 and x> avg.
But if x=-7 and y=-1 then avg. = -8-1/2=-4.5 thus x<avg.

Please suggest me.

Thanks

How is x=-7 closer to -8 than x=-7 is to y=-6.5?
User avatar
aserghe1
Joined: 30 Mar 2017
Last visit: 26 Oct 2021
Posts: 83
Own Kudos:
Given Kudos: 53
GMAT 1: 200 Q1 V1
Products:
GMAT 1: 200 Q1 V1
Posts: 83
Kudos: 172
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given: -8 < y < 0
mean = \(\frac{y-8}{2}\)
Question asks if this is true: \(\frac{y-8}{2}<x\)

Statement 1
Drawing a number line helped me process this info.

<-------(-8)-----(mean)------(y)---------0--------->

The mean is the halfway point between -8 and y. If x is closer to -8 than to y, then x lies to the left of the mean on the number line. So x is not greater than the mean.
Sufficient

Statement 2
x=4y
So question becomes is this true: \(\frac{y-8}{2}<x\) --> \(\frac{y-8}{2}<4y\) --> \(y-8<8y\) --> \(-8<7y\) --> \(-\frac{8}{7}<y\)
Is y greater than -8/7? We dont know. y can be -7 and the answer is NO. or y can be -1 and the answer is YES.
Not sufficient

Answer: A
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105389 posts
496 posts