It is currently 13 Dec 2017, 11:04

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In how many ways can 5 boys and 3 girls be seated on 8

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Manager
Manager
avatar
Joined: 16 Feb 2011
Posts: 195

Kudos [?]: 247 [1], given: 78

Schools: ABCD
In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 24 Sep 2012, 12:02
1
This post received
KUDOS
15
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

66% (01:53) correct 34% (02:02) wrong based on 168 sessions

HideShow timer Statistics

In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?

A. 5760
B. 14400
C. 480
D. 56
E. 40320

[Reveal] Spoiler:
HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?
[Reveal] Spoiler: OA

Last edited by voodoochild on 24 Sep 2012, 12:37, edited 1 time in total.

Kudos [?]: 247 [1], given: 78

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42583

Kudos [?]: 135519 [4], given: 12697

In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 24 Sep 2012, 12:23
4
This post received
KUDOS
Expert's post
8
This post was
BOOKMARKED
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,400\).

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135519 [4], given: 12697

Manager
Manager
avatar
Joined: 16 Feb 2011
Posts: 195

Kudos [?]: 247 [0], given: 78

Schools: ABCD
Re: In how many ways can 5 boys and 3 girls [#permalink]

Show Tags

New post 24 Sep 2012, 12:37
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,000\).

Answer: B.


Bunuel,

Here's what I thought:

_ O _ O _ O _ O

3 G can occupy any of the 4 "_" positions in 4C3 ways.

Similar Girls could also occupy any of the 4 "O" positions in 4C3 ways.

Boys can be permuted in 5! ways. Girls - 3! Therefore arrangements = 4C3* 2 * 5! * 3! = 4*2*120*6= 5760. Can you please let me know what I am missing?

Thanks

Kudos [?]: 247 [0], given: 78

Manager
Manager
avatar
Joined: 16 Feb 2011
Posts: 195

Kudos [?]: 247 [0], given: 78

Schools: ABCD
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 24 Sep 2012, 12:59
Please ignore. I got it. 4C3 should be 6C3.

Arrangemnets = 6C3 * 5! * 3! = B...thanks

Kudos [?]: 247 [0], given: 78

Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 610

Kudos [?]: 1090 [0], given: 43

WE: Science (Education)
Re: In how many ways can 5 boys and 3 girls [#permalink]

Show Tags

New post 24 Sep 2012, 13:32
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,000\).

Answer: B.


Small typo: \(20*6*120=14,000\) should be 14,400.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Kudos [?]: 1090 [0], given: 43

Expert Post
Director
Director
User avatar
B
Joined: 17 Dec 2012
Posts: 623

Kudos [?]: 548 [0], given: 16

Location: India
In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 18 Mar 2016, 01:25
Let us take opposite of the constraint.

2 girls sitting together: :

1 case is GGBGBBBB.
Total number of ways=3!*5!*5 with just shifting the rightmost girl.
Then the 2 leftmost girls can shift one position , and using the above reasoning, the total number of ways = 3!*5!*4 and so on till the rightmost girl has 1 position.

So total number of ways = 3!*5!(5+4+3+2+1)=120*90=10800

Similarly another case is:
GBGGBBBB.
Using the above reasoning, the total number of cases is: 3!*5!*(15) =10800

Let us take 3 girls sitting together

GGGBBBBB
There are 3! *5! Ways. The 3 leftmost girls can shift 6 positions. So there are a total of 3!*5!*6=4320 ways

So total is 2*10800 + 4320=25920

The total number of possibilities = 8! Ways =40,320
Answer is 40320-25920=14400
Hence B.
_________________

Srinivasan Vaidyaraman
Sravna
http://www.sravnatestprep.com/regularcourse.php

Premium Material
Standardized Approaches

Kudos [?]: 548 [0], given: 16

Intern
Intern
avatar
B
Joined: 21 Sep 2015
Posts: 5

Kudos [?]: [0], given: 253

GMAT 1: 760 Q50 V42
Reviews Badge CAT Tests
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 20 Mar 2016, 06:50
[quote="Bunuel"][quote="chetan2u"][quote="Bunuel"][quote="voodoochild"]In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320



Hi Bunuel,

What is the error in this solutions : 8! - 6!3!

Total ways - girls together = not together

Regards,

Kudos [?]: [0], given: 253

Expert Post
Math Expert
User avatar
D
Joined: 02 Aug 2009
Posts: 5345

Kudos [?]: 6115 [0], given: 121

Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 20 Mar 2016, 07:44
urshila wrote:
Bunuel wrote:
chetan2u wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320



Hi Bunuel,

What is the error in this solutions : 8! - 6!3!

Total ways - girls together = not together

Regards,


Hi,
the Q asks to negate even when two are together..
What you have used is only when all three are together..
that is why your answer, 36000, is more than the actual, 14400..

Hope you have realized where you have gone wrong..

_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 6115 [0], given: 121

Intern
Intern
avatar
Joined: 28 Dec 2015
Posts: 42

Kudos [?]: 3 [0], given: 62

Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 23 Jul 2016, 21:44
hello chetan2u@

I want to know how can it be done the other way round,subtracting from the total number of cases:
Say we have 3 girls:G1 G2 and G3.
In the first case,we can take G1 and G2 as a single element,so it will be B1B2B3B4B5G3(G1G2)=7!*2!
Similarly we can take for G2 and G3,considering them as a single element:B1B2B3B4B5G1(G2G3)=7!*2!
And for G1 and G3,considering them as a single element,we again have 7!*2!
Total number of cases=8!
So,Cases where no two girls are together=8!-7!*2!*3=10080.

I am unable to understand,what is wrong in this approach?

Kudos [?]: 3 [0], given: 62

Intern
Intern
avatar
Joined: 13 Jul 2016
Posts: 48

Kudos [?]: 8 [0], given: 309

GMAT 1: 770 Q50 V44
GMAT ToolKit User
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 03 Sep 2016, 10:02
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,400\).

Answer: B.


I am not sure in this kind of problems why don't we consider the following arrangements : BGBBGBGB, BBGBGBGB etc when two of the boys are together

Kudos [?]: 8 [0], given: 309

Board of Directors
User avatar
D
Status: Aiming MBA
Joined: 18 Jul 2015
Posts: 2861

Kudos [?]: 967 [0], given: 69

Location: India
Concentration: Healthcare, Technology
GPA: 3.65
WE: Information Technology (Health Care)
Premium Member Reviews Badge
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 03 Sep 2016, 10:13
siddharthharsh wrote:
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,400\).

Answer: B.


I am not sure in this kind of problems why don't we consider the following arrangements : BGBBGBGB, BBGBGBGB etc when two of the boys are together


Notice that we have already included these scenarios out of 14,400.

See, Bunuel has already included 5 places for Boys and 6 places for Girls, while we have 8 people in total.
_________________

How I improved from V21 to V40! ?

Kudos [?]: 967 [0], given: 69

Intern
Intern
avatar
Joined: 13 Jul 2016
Posts: 48

Kudos [?]: 8 [0], given: 309

GMAT 1: 770 Q50 V44
GMAT ToolKit User
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 03 Sep 2016, 10:29
abhimahna wrote:

Notice that we have already included these scenarios out of 14,400.

See, Bunuel has already included 5 places for Boys and 6 places for Girls, while we have 8 people in total.


Thanks. So the logic is whenever the space that was left out for girls to occupy is vacant then the two adjacent boys are actually together. Was kind of difficult to see unless I formulated it in my own words. That is the trick with P&C and probability, kind of seems obvious if you have nailed it, but requires a bit of imagination in some easy ones too. :)

Kudos [?]: 8 [0], given: 309

Manager
Manager
avatar
Joined: 28 Jun 2016
Posts: 207

Kudos [?]: 93 [0], given: 63

Location: Canada
Concentration: Operations, Entrepreneurship
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 04 Sep 2016, 19:22
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,400\).

Answer: B.


# of ways 3 girls can occupy the places of these 6 stars is [m]C^3_6=20

How did you get this step??


Sent from my iPhone using GMAT Club Forum mobile app

Kudos [?]: 93 [0], given: 63

Board of Directors
User avatar
D
Status: Aiming MBA
Joined: 18 Jul 2015
Posts: 2861

Kudos [?]: 967 [0], given: 69

Location: India
Concentration: Healthcare, Technology
GPA: 3.65
WE: Information Technology (Health Care)
Premium Member Reviews Badge
In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 04 Sep 2016, 22:53
acegmat123 wrote:
Bunuel wrote:
voodoochild wrote:
In how many ways can 5 boys and 3 girls be seated on 8 chairs so that no two girls are together?


A 5760
B 14400
C 480
D 56
E 40320

HEre's what I did :

5! * (4C3) *2* 3! = 120*6*4*2= 5760. Am I correct?


Consider the following arrangement:

*B*B*B*B*B*

Now, if girls occupy the places of 6 stars no girls will be together.

# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20\);
# of ways 3 girls can be arranged on these places is \(3!=6\);
# of ways 5 boys can be arranged is \(5!=120\).

So total # of ways to arrange 3 Girls and 5 boys so that no girls are together is \(20*6*120=14,400\).

Answer: B.


# of ways 3 girls can occupy the places of these 6 stars is \(C^3_6=20

How did you get this step??


Sent from my iPhone using GMAT Club Forum mobile app


We have 6 places for the girls to sit and we have only 3 girls. So, Girls could select the 3 places as [m]C^3_6=20\);
_________________

How I improved from V21 to V40! ?

Kudos [?]: 967 [0], given: 69

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14868

Kudos [?]: 287 [0], given: 0

Premium Member
Re: In how many ways can 5 boys and 3 girls be seated on 8 [#permalink]

Show Tags

New post 25 Nov 2017, 02:23
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 287 [0], given: 0

Re: In how many ways can 5 boys and 3 girls be seated on 8   [#permalink] 25 Nov 2017, 02:23
Display posts from previous: Sort by

In how many ways can 5 boys and 3 girls be seated on 8

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.