In the figure, ABC is an equilateral triangle, and DAB is a right triangle. What is the area of the circumscribed circle? You should know the following properties to solve this question:
• All inscribed angles that subtend the same arc are equal. The Central Angle Theorem states that the measure of inscribed angle is always half the measure of the central angle. Hence, all inscribed angles that subtend the same arc are equal.
• A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.
• In a right triangle where the angles are 30°, 60°, and 90° the sides are always in the ratio \(1 : \sqrt{3}: 2\). Notice that the smallest side (1) is opposite the smallest angle (30°), and the longest side (2) is opposite the largest angle (90°).For more check Circles Triangles and chapters of Math Book:
https://gmatclub.com/forum/math-circles-87957.html and
https://gmatclub.com/forum/math-triangles-87197.htmlSo, from above we'll have that as DAB=90 degrees then DB must be a diameter of the circle. Next, as angles ACB and ADB subtend the same arc AB then they must be equal and since ACB=60 (remeber ACB is an equilateral triangle) then ADB=60 too. Thus DAB is 30-60-90 triangle and its sides are in ratio \(1 : \sqrt{3}: 2\).
(1) DA = 4 --> the side opposite 30 degrees is 4, then hypotenuse DB=diameter=4*2=8 --> radius=4 --> \(area=\pi{r^2}=16\pi\). Sufficient.
(2) Angle ABD = 30 degrees --> we knew this from the stem, so nothing new. Not sufficient.
Answer: A.
Hope it's clear.
Attachment:
Inscribed Triangles.gif [ 2.27 KiB | Viewed 32269 times ]