Last visit was: 11 Dec 2024, 05:29 It is currently 11 Dec 2024, 05:29
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 147
Own Kudos:
660
 [74]
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
8
Kudos
Add Kudos
66
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
 [26]
19
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 147
Own Kudos:
660
 [1]
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
avatar
acegmat1
Joined: 29 May 2013
Last visit: 30 Apr 2015
Posts: 20
Own Kudos:
Given Kudos: 8
Concentration: Marketing, Entrepreneurship
GMAT Date: 08-20-2014
GPA: 3.34
Posts: 20
Kudos: 84
Kudos
Add Kudos
Bookmarks
Bookmark this Post
C according to me !
Statement 1 tells us about the base of the triangle. Insufficient...
Statement 2 describes area, but base of triangle is still unknown...Insufficient

Combine both and you have the perimeters.

OA please?
User avatar
shameekv
Joined: 29 Aug 2013
Last visit: 11 Aug 2020
Posts: 51
Own Kudos:
Given Kudos: 26
Location: United States
Concentration: Finance, International Business
GMAT 1: 590 Q41 V29
GMAT 2: 540 Q44 V20
GPA: 3.5
WE:Programming (Computer Software)
GMAT 2: 540 Q44 V20
Posts: 51
Kudos: 175
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AccipiterQ
In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR.

(2) The area of triangle ABC is 75% of the area of square SQRE.


I believe we need at least one dimension of either the square side or one side of the triangle. Unless we have that we can not get the absolute value of the difference in the perimeter values.

We will get an equation converted in one of the sides.

Can any one come up with the OE. Thanks!!!
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 310
Own Kudos:
Given Kudos: 134
Posts: 310
Kudos: 597
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER.

How do I know to do that? How do I know to take those exact steps to get to that result? I came up with (2/3)CB = ER which I believe is a correct statement but obviously, it would make it more difficult to determine sufficiency in the 2 or so minutes we have. With the formula I got, I know the length of the base relative to the height and I can find the hypotenuse and obviously I know the perimeter of the square (the height of the triangle) Is that enough to determine sufficiency?
avatar
Rohan_Kanungo
Joined: 10 Dec 2013
Last visit: 07 Nov 2016
Posts: 14
Own Kudos:
Given Kudos: 7
Location: India
Concentration: Technology, Strategy
Schools: ISB '16 (S)
GMAT 1: 710 Q48 V38
GPA: 3.9
WE:Consulting (Consulting)
Schools: ISB '16 (S)
GMAT 1: 710 Q48 V38
Posts: 14
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
AB=AC=\sqrt{4^2+3^2}=5

Hi Bunuel,

Can you please explain how did you know the length of the sides as the only information given in the questions is about how many times a side is of another and not the absolute values?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
685,026
 [1]
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Rohan_Kanungo
Quote:
AB=AC=\sqrt{4^2+3^2}=5

Hi Bunuel,

Can you please explain how did you know the length of the sides as the only information given in the questions is about how many times a side is of another and not the absolute values?

Yes, we don't know the lengths. We only know the ratios. But if you write x, 2x, 2x, x, and 4x instead of 1, 2, 2, 1, and 4 you'll get the same result.
User avatar
Temurkhon
Joined: 23 Jan 2013
Last visit: 06 Apr 2019
Posts: 417
Own Kudos:
Given Kudos: 43
Schools: Cambridge'16
Schools: Cambridge'16
Posts: 417
Kudos: 278
Kudos
Add Kudos
Bookmarks
Bookmark this Post
good brainshaker after long break)
avatar
qlx
Joined: 17 Mar 2014
Last visit: 12 Feb 2016
Posts: 61
Own Kudos:
Given Kudos: 38
Posts: 61
Kudos: 244
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR. Look at the diagram below:
Attachment:
Untitled.png
\(AB=AC=\sqrt{4^2+3^2}=5\).

The perimeter of SQRE is 4*4=16.
The perimeter of ABC is 6+5+5=16.

The difference is 0. Sufficient.

(2) The area of triangle ABC is 75% of the area of square SQRE. The height of ABC equals to the side of the square, thus we have that 1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER. The same info as above. Sufficient.

Answer: D.

I get why (1) is sufficient , but in statement 2 we are taking CB=( ER + 2RB) which means we are taking CE= RB
but can anybody explain why in statement 2 we are able to take CE = RB, how do we know they are equal.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
685,026
 [2]
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
qlx
Bunuel

In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR. Look at the diagram below:

\(AB=AC=\sqrt{4^2+3^2}=5\).

The perimeter of SQRE is 4*4=16.
The perimeter of ABC is 6+5+5=16.

The difference is 0. Sufficient.

(2) The area of triangle ABC is 75% of the area of square SQRE. The height of ABC equals to the side of the square, thus we have that 1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER. The same info as above. Sufficient.

Answer: D.

I get why (1) is sufficient , but in statement 2 we are taking CB=( ER + 2RB) which means we are taking CE= RB
but can anybody explain why in statement 2 we are able to take CE = RB, how do we know they are equal.

AS = AQ implies that A is the midpoint of SQ.
AB = AC implies that triangle ABC is isosceles, so it's symmetrical around the altitude. So, half of it lies to the left of the height and another identical half to the right of the height.

Therefore, CE = RB.

Hope it's clear.
avatar
Fanja91
Joined: 28 May 2014
Last visit: 15 Mar 2015
Posts: 13
Own Kudos:
Posts: 13
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I was going to say E, before I read Bunuels answer.

My, somewhat foolish, approach was that I was looking for actual measurements. As there were none I figured the ratio's wouldn't help me come up with a definitive answer of an absolute difference.

Thanks for clearing that out!
User avatar
itsworththepain
Joined: 07 Jun 2014
Last visit: 17 May 2022
Posts: 12
Own Kudos:
Given Kudos: 43
Location: India
GMAT 1: 720 Q49 V38
GPA: 2.91
WE:Consulting (Energy)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Rohan_Kanungo
Quote:
AB=AC=\sqrt{4^2+3^2}=5

Hi Bunuel,

Can you please explain how did you know the length of the sides as the only information given in the questions is about how many times a side is of another and not the absolute values?

Yes, we don't know the lengths. We only know the ratios. But if you write x, 2x, 2x, x, and 4x instead of 1, 2, 2, 1, and 4 you'll get the same result.


Hi Bunuel,

Thanks for this, I have tried it for a few values to confirm and it indeed does come out to be zero for all values of x.

Just wanted to understand how did you come up with this generalization without having to try a number of different values, is there some basic logic or rule that can come into play here? As it seems like the concept of "x, 2x, 2x, x, and 4x" was more of a generalization after having tried one value?

Thanks in advance,
Sagar
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
Kudos
Add Kudos
Bookmarks
Bookmark this Post
itsworththepain
Bunuel

Yes, we don't know the lengths. We only know the ratios. But if you write x, 2x, 2x, x, and 4x instead of 1, 2, 2, 1, and 4 you'll get the same result.


Hi Bunuel,

Thanks for this, I have tried it for a few values to confirm and it indeed does come out to be zero for all values of x.

Just wanted to understand how did you come up with this generalization without having to try a number of different values, is there some basic logic or rule that can come into play here? As it seems like the concept of "x, 2x, 2x, x, and 4x" was more of a generalization after having tried one value?

Thanks in advance,
Sagar

We are given only ratios in the question, so we can assume values according to them: in x, 2x, 2x, x, and 4x, if x=1, then the lengths come out to be 1, 2, 2, 1, and 4.
User avatar
Nevernevergiveup
User avatar
Retired Moderator
Joined: 18 Sep 2014
Last visit: 20 Aug 2023
Posts: 1,010
Own Kudos:
Given Kudos: 79
Location: India
Products:
Posts: 1,010
Kudos: 2,879
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR. Look at the diagram below:
Attachment:
Untitled.png
\(AB=AC=\sqrt{4^2+3^2}=5\).

The perimeter of SQRE is 4*4=16.
The perimeter of ABC is 6+5+5=16.

The difference is 0. Sufficient.

(2) The area of triangle ABC is 75% of the area of square SQRE. The height of ABC equals to the side of the square, thus we have that 1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER. The same info as above. Sufficient.

Answer: D.

OA is C but not D(As per the Manhattan source).
Please explain without taking values and also explain why have considered few assumptions that you have mentioned.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Mechmeera
Bunuel

In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR. Look at the diagram below:
Attachment:
Untitled.png
\(AB=AC=\sqrt{4^2+3^2}=5\).

The perimeter of SQRE is 4*4=16.
The perimeter of ABC is 6+5+5=16.

The difference is 0. Sufficient.

(2) The area of triangle ABC is 75% of the area of square SQRE. The height of ABC equals to the side of the square, thus we have that 1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER. The same info as above. Sufficient.

Answer: D.

OA is C but not D(As per the Manhattan source).
Please explain without taking values and also explain why have considered few assumptions that you have mentioned.

The OA of this question is D, not C. And it's explained WHY it's D. Those are not the actual lengths but ratios, which is explained here: in-the-figure-above-sqre-is-a-square-ab-ac-and-as-aq-161814.html#p1330094

You are mixing this question with this one: in-the-figure-above-pqrs-is-a-square-and-ab-ac-is-the-area-of-tria-192330.html (OA is C there).

Please read the whole thread carefully before posting a question.
User avatar
Nevernevergiveup
User avatar
Retired Moderator
Joined: 18 Sep 2014
Last visit: 20 Aug 2023
Posts: 1,010
Own Kudos:
Given Kudos: 79
Location: India
Products:
Posts: 1,010
Kudos: 2,879
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Mechmeera
Bunuel

In the figure above, SQRE is a square, AB = AC, and AS = AQ. What is the difference between the perimeter of triangle ABC and the perimeter of square SQRE?

(1) The length of RE is 4 times the length of BR. Look at the diagram below:
Attachment:
Untitled.png
\(AB=AC=\sqrt{4^2+3^2}=5\).

The perimeter of SQRE is 4*4=16.
The perimeter of ABC is 6+5+5=16.

The difference is 0. Sufficient.

(2) The area of triangle ABC is 75% of the area of square SQRE. The height of ABC equals to the side of the square, thus we have that 1/2*ER*CB=3/4*ER^2 --> 2CB=3ER --> 2(ER+2RB)=3ER --> 4RB=ER. The same info as above. Sufficient.

Answer: D.

OA is C but not D(As per the Manhattan source).
Please explain without taking values and also explain why have considered few assumptions that you have mentioned.

The OA of this question is D, not C. And it's explained WHY it's D. Those are not the actual lengths but ratios, which is explained here: in-the-figure-above-sqre-is-a-square-ab-ac-and-as-aq-161814.html#p1330094

You are mixing this question with this one: in-the-figure-above-pqrs-is-a-square-and-ab-ac-is-the-area-of-tria-192330.html (OA is C there).

Please read the whole thread carefully before posting a question.

Sorry for the mistake. You can remove my post here as it is not relevant(Im not able to delete it).
And please explain the problem in below link.
in-the-figure-above-pqrs-is-a-square-and-ab-ac-is-the-area-of-tria-192330.html
avatar
jwam2
Joined: 08 Dec 2015
Last visit: 09 Jan 2020
Posts: 16
Own Kudos:
Given Kudos: 57
Posts: 16
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel I am reviewing the other problem that is similar to this and I have two quick follow up questions.

(1) How are you able to assume in statement 1 that CE is also 1? It makes sense intuitively, but I'm not seeing that it has to be equal to segment RB.

(2) For the second question, it is not as clear how to pick smart numbers for statement 1 or 2.

I found myself guessing the right answer for this question but spending a minute and a half trying to prove why it was correct. Any advice for approaching this problem is helpful.
User avatar
guireif
Joined: 05 Jul 2016
Last visit: 17 Aug 2018
Posts: 14
Own Kudos:
Given Kudos: 373
Location: Brazil
Concentration: Finance, Entrepreneurship
WE:Analyst (Finance: Investment Banking)
Posts: 14
Kudos: 99
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi guys,

I know this is an old question, but I'm not sure about one thing.

Should I assume by looking at the figure that CE=RB? Because in the first statement it just say that RE is less than twice the length of BR, but how do I know that the triangle is "centered" with the square, by not looking the second statement?

thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,803
Own Kudos:
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,803
Kudos: 685,026
Kudos
Add Kudos
Bookmarks
Bookmark this Post
guireif
Hi guys,

I know this is an old question, but I'm not sure about one thing.

Should I assume by looking at the figure that CE=RB? Because in the first statement it just say that RE is less than twice the length of BR, but how do I know that the triangle is "centered" with the square, by not looking the second statement?

thanks

Since AB = AC (triangle ABC is isosceles), and AS = AQ, then CE must be equal to RB.
 1   2   
Moderator:
Math Expert
97803 posts