GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 May 2019, 15:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 55188
In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as  [#permalink]

Show Tags

New post 26 Apr 2019, 02:55
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

59% (01:33) correct 41% (01:49) wrong based on 88 sessions

HideShow timer Statistics

examPAL Representative
User avatar
P
Joined: 07 Dec 2017
Posts: 1056
Re: In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as  [#permalink]

Show Tags

New post 26 Apr 2019, 15:24
The Logical approach to this question will focus on the formula of triangular area: since both of the triangles have the same height (3),in order to compare their areas all we need to know is the lengths of their bases.
Statement (1) doesn't provide any information about the base, but statement (2) does: if d=2c,it means that since the length of OQ is c, the length of QS is 2c-c=c. So both triangles have the same base, and thus the same area. Since statement (2) was sufficient on its own, but statement (1) wasn't, the correct answer is (B).

Posted from my mobile device
_________________
Intern
Intern
User avatar
S
Joined: 14 Apr 2017
Posts: 44
Location: Hungary
GMAT 1: 690 Q50 V34
GMAT 2: 760 Q50 V42
GMAT 3: 700 Q50 V33
WE: Education (Education)
Re: In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as  [#permalink]

Show Tags

New post 27 Apr 2019, 16:04
Bunuel wrote:
Image
In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as indicated. Do ΔOPQ and ΔQRS have equal areas?

(1) b = 2a
(2) d = 2c


DS71602.01
OG2020 NEW QUESTION


The y-coordinate of any point in the xy-coordinate plane measures that point's distance from the x-axis. If a triangle has one of its sides on the x-axis, then the y-coordinate of its vertex opposite this base measures the height corresponding to this base. The relevant height of each of these triangles in the figure is 3.

The original question: Is \(\frac{(c-0)\cdot 3}{2}=\frac{(d-c)\cdot 3}{2}\) ?
The rephrased question: Is \(c=d-c\) ? \(\implies\) Is \(d=2c\) ?

1) We know that \(b=2a\), but no information is given about \(c\) or \(d\). Thus, we can't get a definite answer to the rephrased question. \(\implies\) Insufficient

2) We know that \(d=2c\). Thus, the answer to the rephrased question is a definite Yes. \(\implies\) Sufficient

Answer: B
_________________
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14171
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as  [#permalink]

Show Tags

New post 12 May 2019, 14:00
Hi All,

We're told that In the figure above, the vertices of triangle OPQ and triangle QRS have coordinates as indicated. We're asked if triangle OPQ and triangle QRS have equal areas. This is a YES/NO question and is built on Geometry rules (although you might find it useful to TEST VALUES). Based on the information in the graph, BOTH triangles have a HEIGHT of 3, so for those triangles to have the SAME area, they must have the same BASE (meaning that D - C would have to equal C - 0).

(1) B = 2A

The information in Fact 1 defines the ratio of how 'spread out' the top of each triangle is from the other, but tells us nothing about the bases of the triangles. You might find it helpful to think about where Point S COULD be (while the two triangles could be identical, it's possible that Point S might be really far to the right on the graph - meaning that triangle QRS is much bigger than triangle OPQ).
Fact 1 is INSUFFICIENT

(2) D = 2C

With the information in Fact 2, you might recognize that D is exactly TWICE as far from 0 as C is, so C is exactly "in the middle" and (D - C) and (C - 0) are equal. If you don't immediately see that, then you can prove it by TESTing VALUES.

IF....
C=1 and D=2, then (D-C) = 1 and (C-0) = 1 and the answer to the question is YES.
C=1.5 and D=3, then (D-C) = 1.5 and (C-0) = 1.5 and the answer to the question is YES.
C=2 and D=4, then (D-C) = 2 and (C-0) = 2 and the answer to the question is YES.
Etc.
Fact 2 is SUFFICIENT

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6160
Location: United States (CA)
Re: In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as  [#permalink]

Show Tags

New post 12 May 2019, 19:07
Bunuel wrote:
Image
In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as indicated. Do ΔOPQ and ΔQRS have equal areas?

(1) b = 2a
(2) d = 2c


DS71602.01
OG2020 NEW QUESTION

Attachment:
2019-04-26_1354.png


Using the diagram, we see that both triangles have a height of 3. If we can determine that the bases the same, they would have the same area. We also see that the base of triangle OPQ is c and the base of triangle QRS is d - c.

Statement One Alone:

b = 2a

Knowing that b = 2a is not enough to determine the base of either triangle. Statement one alone is not sufficient to answer the question.

Statement Two Alone:

d = 2c

Since d = 2c, the base of triangle QRS is 2c - c = c, so the bases of the two triangles are equal and thus the area of the triangles is equal.

Answer: B
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Bot
Re: In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as   [#permalink] 12 May 2019, 19:07
Display posts from previous: Sort by

In the figure above, the vertices of ΔOPQ and ΔQRS have coordinates as

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.