It is currently 14 Dec 2017, 05:16

Decision(s) Day!:

CHAT Rooms | Wharton R1 | Stanford R1 | Tuck R1 | Ross R1 | Haas R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In the morning, Chris drives from Toronto to Oakville and in the eveni

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42605

Kudos [?]: 135613 [1], given: 12705

In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 18 Aug 2015, 00:48
1
This post received
KUDOS
Expert's post
26
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

25% (01:16) correct 75% (01:34) wrong based on 366 sessions

HideShow timer Statistics

In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

(1) In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.
(2) In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.


Kudos for a correct solution.
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135613 [1], given: 12705

1 KUDOS received
Intern
Intern
avatar
Joined: 09 Jul 2015
Posts: 7

Kudos [?]: 2 [1], given: 0

Concentration: Finance, Technology
WE: Analyst (Computer Software)
Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 18 Aug 2015, 09:00
1
This post received
KUDOS
Bunuel wrote:
In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

(1) In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.
(2) In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.


Kudos for a correct solution.


IMO the answer is E, because
Statement 1 Not evening speed is given ==> Insuffient
Statement 2 No morning speed is given ==> Insuffient

Combined
Evening speed max is 49.9 and morning speed can be any thing greater than 10 which drives the avg speed either sides of inequality. Hence E

Kudos [?]: 2 [1], given: 0

1 KUDOS received
Director
Director
avatar
G
Joined: 21 May 2013
Posts: 555

Kudos [?]: 53 [1], given: 506

CAT Tests
Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 18 Aug 2015, 10:37
1
This post received
KUDOS
Bunuel wrote:
In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

(1) In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.
(2) In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.


Kudos for a correct solution.



+1 for E.
Statement 1:Avg speed =Atleast 10 miles per hour(can be 1000 or 50 or 100). Insufficient
Statement 2: Avg speed from O to T is <=50 miles per hour. Insufficient. No info about anything else.
Even combining both, we can't solve
Answer E

Kudos [?]: 53 [1], given: 506

Manager
Manager
User avatar
Joined: 13 Nov 2014
Posts: 50

Kudos [?]: 11 [0], given: 105

GMAT 1: 590 Q42 V29
GMAT 2: 630 Q47 V29
Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 18 Aug 2015, 18:43
IMO E,
seconds statement is out.
1st statement says at least 10, hence actual speed can be anything above 10, which can change the answer to below 100 miles or above 100miles
_________________

-----------------------------------------
Consider Cudos if you like this post.
-----------------------------------------

Kudos [?]: 11 [0], given: 105

7 KUDOS received
Manager
Manager
User avatar
Joined: 14 Mar 2014
Posts: 148

Kudos [?]: 176 [7], given: 124

GMAT 1: 710 Q50 V34
Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 18 Aug 2015, 23:35
7
This post received
KUDOS
7
This post was
BOOKMARKED
Bunuel wrote:
In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

(1) In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.
(2) In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.


Kudos for a correct solution.


IMO : B

Let the distance between Toronto and Oakville be 100miles

Avg Speed = \(\frac{Total Distance traveled}{Total time taken}\)

Thus total distance covered will be 200 miles (from Toronto to Oakville 100+ 100 and from Oakville to Toronto )

Was his average speed for the entire round trip less than 100 miles per hour?

Avg Speed < 100
\(\frac{200}{Total Time}\) <100

Total Time > 2hrs

Statement 1: In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.

If Chris travels at 10 mph in the mrng he will take 10 hrs to reach Oakville. Thus Total time > 2hrs Satisfies
If Chris travels at 200mph then he will take 30 mins to reach. We don't have evening data to confirm the condition.
Hence not sufficient

Statement 2: In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.

If Chris travels @ 50mph in the evening then he will take 2hrs to reach Toronto.
Thus minimum time taken will always be 2hrs
Thus total time always will be > 2hrs.
Hence Sufficient
_________________

I'm happy, if I make math for you slightly clearer
And yes, I like kudos
¯\_(ツ)_/¯ :-)

Kudos [?]: 176 [7], given: 124

Intern
Intern
avatar
Joined: 18 Mar 2015
Posts: 1

Kudos [?]: [0], given: 7

Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 20 Aug 2015, 20:47
IMO C
Statement 1 not sufficient since no information about the evening trip is given. Statement 2 not sufficient since no information about morning trip is given.
But combining both we have formula
Avg speed=2(s1*s2)/(s1+s2)
It can be determined. Hence C

Kudos [?]: [0], given: 7

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42605

Kudos [?]: 135613 [1], given: 12705

Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 23 Aug 2015, 11:32
1
This post received
KUDOS
Expert's post
8
This post was
BOOKMARKED
Bunuel wrote:
In the morning, Chris drives from Toronto to Oakville and in the evening he drives back from Oakville to Toronto on the same road. Was his average speed for the entire round trip less than 100 miles per hour?

(1) In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.
(2) In the evening, Chris drove at an average speed which was no more than 50 miles per hour while travelling from Oakville to Toronto.


Kudos for a correct solution.


VERITAS PREP OFFICIAL SOLUTION:

We know that the question involves average speed. The case involves travelling at a particular average speed for one half of the journey and at another average speed for the other half of the journey.

So average speed of the entire trip will be given by 2ab/(a+b)

But the first problem is that we are given a range of speeds. How do we handle ‘at least 10’ and ‘no more than 50’ in equation form? We have learnt that we should focus on the extremities so let’s analyse the problem by taking the numbers are the extremities:10 and 50

Statement 1: In the morning, Chris drove at an average speed of at least 10 miles per hour while travelling from Toronto to Oakville.

What if Chris drives at an average speed of 10 mph in the morning and averages 100 mph for the entire journey? What will be his average speed in the evening? Perhaps around 200, right? Let’s see.

100 = 2*10*b/(10 + b)

1000 + 100b = 20b

1000 = -80b

b = – 1000/80

How can speed be negative?

Let’s hold on here and try the same calculation for statement 2 too.

Statement 2: In the evening, Chris drove at an average speed which no more than 50 miles per hour while travelling from Oakville to Toronto.

If Chris drives at an average speed of 50 mph in the evening, and averages 100 mph, let’s find his average speed in the morning.

100 = 2a*50/(a + 50)

100a + 5000 = 100a

5000 = 0

This doesn’t make any sense either!

What is going wrong? Look at it conceptually:

Say, Toronto is 100 miles away from Oakville. If Chris wants his average speed to be 100 mph over the entire trip, he should cover 100+100 = 200 miles in 2 hrs.

What happens when he travels at 10 mph in the morning? He takes 100/10 = 10 hrs to reach Oakville in the morning. He has already taken more time than what he had allotted for the entire round trip. Now, no matter what his speed in the evening, his average speed cannot be 100mph. Even if he reaches Oakville to Toronto in the blink of an eye, he would have taken 10 hours and then some time to cover the total 200 miles distance. So his average speed cannot be equal to or more than 200/10 = 20 mph.

Similarly, if he travels at 50 mph in the evening, he takes 2 full hours to travel 100 miles (one side distance). In the morning, he would have taken some time to travel 100 miles from Toronto to Oakville. Even if that time is just a few seconds, his average speed cannot be 100 mph under any circumstances.

But statement 1 says that his speed in morning was at least 10 mph which means that he could have traveled at 10 mph in the morning or at 100 mph. In one case, his average speed for the round trip cannot be 100 mph and in the other case, it can very well be. Hence statement 1 alone is not sufficient.

On the other hand, statement 2 says that his speed in the evening was 50 mph or less. This means he would have taken AT LEAST 2 hours in the morning. So his average speed for the round trip cannot be 100 mph under any circumstances. So statement 2 alone is sufficient to answer this question with ‘No’.

Answer (B)

Takeaway: If your average speed is s for a certain trip, your average speed for half the distance must be more than s/2.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135613 [1], given: 12705

1 KUDOS received
Manager
Manager
avatar
B
Joined: 13 Apr 2017
Posts: 63

Kudos [?]: 3 [1], given: 2

Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 08 May 2017, 16:17
1
This post received
KUDOS
the problem seems complex but the solution is easy, just solve the inequality.
Now, the average speed should be 2/ (1/ v1 + 1 / v2 ) < 100?
From each st, we can see that change the sign every time we use reciprocal, then we should find the answer

Kudos [?]: 3 [1], given: 2

Intern
Intern
avatar
B
Joined: 03 Jan 2017
Posts: 21

Kudos [?]: 1 [0], given: 0

GMAT 1: 680 Q49 V34
Re: In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 15 May 2017, 05:48
The way I solved this is this:

Average Speed for total trip= 2D/(T1+T2) where D is trip from T to O and T1 and T2 are the times taken for each way.

The question can be simplified to arrive at D>50(T1+T2)?

Statement 1 implies that D>=10T1. This is insufficient

Statement 2 implies that D<=50T2. This is sufficient since this means that D<50(T1+T2) and hence answer is no.

B

Kudos [?]: 1 [0], given: 0

Senior Manager
Senior Manager
avatar
B
Joined: 02 Apr 2014
Posts: 263

Kudos [?]: 18 [0], given: 499

In the morning, Chris drives from Toronto to Oakville and in the eveni [#permalink]

Show Tags

New post 02 Oct 2017, 23:43
Hi,

Answer is B.

Let V1 be velocity from toronto to oakvilee, V2 be velocity from oakville to toronto.

Average Velocity = 2(v1 * v2)/(v1+v2),
Question is => 2(v1 * v2)/(v1+v2) < 100?

Statement1
given v1 >= 10, so if both v1 = v2 = 102, the average velocity > 100,
if both v1 = v2 = 98, the average velocity < 100. -> InSuff

Statement2
given v2 <= 50,

Let v2 = 50,
let us assume that average velocity < 100
2 * (50 v1) / (50 + v1) < 100,
rearranging,
100 v1 < 5000 + 100 v1,
0 < 5000 => which is definitely true, so our assumption average velocity < 100 is true.

even if v1 were less than 50 (say, 40)
then above eqn becomes -20v1 < 4000, which is definitely true, as v1 will be positive,
So no matter whatever v1 be, as long as v2 <= 50, average velocity for entire trip is < 100.

Suff

Hence B

Kudos [?]: 18 [0], given: 499

In the morning, Chris drives from Toronto to Oakville and in the eveni   [#permalink] 02 Oct 2017, 23:43
Display posts from previous: Sort by

In the morning, Chris drives from Toronto to Oakville and in the eveni

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.