GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Dec 2018, 03:08

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • FREE Quant Workshop by e-GMAT!

     December 16, 2018

     December 16, 2018

     07:00 AM PST

     09:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.
  • Free GMAT Prep Hour

     December 16, 2018

     December 16, 2018

     03:00 PM EST

     04:00 PM EST

    Strategies and techniques for approaching featured GMAT topics

In the rectangular coordinate system above, the area of triangular

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 08 Jul 2009
Posts: 6
In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 08 Jul 2009, 16:11
11
67
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

77% (01:57) correct 23% (02:04) wrong based on 1384 sessions

HideShow timer Statistics

Image

In the rectangular coordinate system above, the area of triangular region PQR is

(A) 12.5
(B) 14
(C) 10√2
(D) 16
(E) 25


Attachment:
IMAGE PT1.jpg
IMAGE PT1.jpg [ 5.67 KiB | Viewed 95986 times ]
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51223
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 03 Oct 2010, 01:46
4
2
gottabwise wrote:
Pathfinder wrote:
I came to the same result but my way of solving was a little bit different.

Using Pythagorean theorem we can easily find that PQ and PR are 5 each. Now we have to determine is the angle PQR right angle.

Yes it is. How we know that. Using Pythagorean theorem again we can determine that QR is\(5\sqrt{2}\) simply by solving \(\sqrt{1^2 + 7^2}\) = \(\sqrt{50}\) = \(5\sqrt{2}\).

We know that PQ and QR are both 5 and their base is \(5\sqrt{2}\) and that diagonale of the square is \(a\sqrt{2}\). So, triangle PQR must be half of the square with the base of 5 or 12,5.


Nookway...thanks for the colored graph. It's a great visual and helpful reminder of how to be smarter/more efficient.

Pathfinder...is it necessary to determine whether PQR is a right triangle? I'm unsure about the relevance.

Method - distance formula for PQ & PR (because they're perpendicular), area formula (1/2B*H) = 1/2(PQ)(PR)=1/2(5)(5)


PQR just happened to be right triangle, so if we noticed this fact we could use properties of a right triangle to solve the problem (for example the way Pathfinder did). On the other hand solution provided by nookway works no matter whether PQR is right or not, also it requires much less calculations.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Current Student
User avatar
Joined: 03 Aug 2006
Posts: 110
Location: Next to Google
Schools: Haas School of Business
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 08 Jul 2009, 18:13
86
53
The answer is 12.5

If you look carefully, the triangle is enclosed within a rectangle with dimensions 7 x 4. See attached figure.

Area of the \(\triangle PQR\)

= Area of rectangle - Area of yellow triangle - Area of blue triangle - Area of red triangle

\(= (7 \times 4) - (\frac{1}{2} \times 3 \times 4) - (\frac{1}{2} \times 4 \times 3) - (\frac{1}{2} \times 1 \times 7)\)

\(= 28 - 6 - 6 - 3.5\)

\(= 12.5\)
Attachments

IMAGE PT1.jpg
IMAGE PT1.jpg [ 6.58 KiB | Viewed 94645 times ]

General Discussion
Intern
Intern
avatar
Joined: 01 Jul 2009
Posts: 3
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 08 Jul 2009, 18:25
1
1
This answer is (A) 12.5. We can easily prove PQR is a right triangle with the length of PQ and PR are 5, and QR is 5\sqrt{2}. And the area of triangle PQR = square of PQ*square of PR/2=12.5.

And Nookway gave a correct result in very good ways.
Retired Moderator
User avatar
Joined: 01 Nov 2007
Posts: 353
Schools: Wharton Class of 2011
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 09 Jul 2009, 12:52
12
4
I came to the same result but my way of solving was a little bit different.

Using Pythagorean theorem we can easily find that PQ and PR are 5 each. Now we have to determine is the angle PQR right angle.

Yes it is. How we know that. Using Pythagorean theorem again we can determine that QR is\(5\sqrt{2}\) simply by solving \(\sqrt{1^2 + 7^2}\) = \(\sqrt{50}\) = \(5\sqrt{2}\).

We know that PQ and QR are both 5 and their base is \(5\sqrt{2}\) and that diagonale of the square is \(a\sqrt{2}\). So, triangle PQR must be half of the square with the base of 5 or 12,5.
_________________

My GMAT experience
My retake experience - GMAT dropped from 720 to 690 - advice for retakers
My TOEFL experience - 108


GMAT Club Premium Membership - big benefits and savings

Manager
Manager
avatar
Joined: 24 Jul 2009
Posts: 173
Location: Anchorage, AK
Schools: Mellon, USC, MIT, UCLA, NSCU
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 02 Oct 2010, 20:34
1
1
Pathfinder wrote:
I came to the same result but my way of solving was a little bit different.

Using Pythagorean theorem we can easily find that PQ and PR are 5 each. Now we have to determine is the angle PQR right angle.

Yes it is. How we know that. Using Pythagorean theorem again we can determine that QR is\(5\sqrt{2}\) simply by solving \(\sqrt{1^2 + 7^2}\) = \(\sqrt{50}\) = \(5\sqrt{2}\).

We know that PQ and QR are both 5 and their base is \(5\sqrt{2}\) and that diagonale of the square is \(a\sqrt{2}\). So, triangle PQR must be half of the square with the base of 5 or 12,5.


Nookway...thanks for the colored graph. It's a great visual and helpful reminder of how to be smarter/more efficient.

Pathfinder...is it necessary to determine whether PQR is a right triangle? I'm unsure about the relevance.

Method - distance formula for PQ & PR (because they're perpendicular), area formula (1/2B*H) = 1/2(PQ)(PR)=1/2(5)(5)
_________________

Reward wisdom with kudos. ;)

Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 765
Location: London
GMAT ToolKit User Reviews Badge
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 03 Oct 2010, 01:39
gottabwise wrote:

Nookway...thanks for the colored graph. It's a great visual and helpful reminder of how to be smarter/more efficient.

Pathfinder...is it necessary to determine whether PQR is a right triangle? I'm unsure about the relevance.

Method - distance formula for PQ & PR (because they're perpendicular), area formula (1/2B*H) = 1/2(PQ)(PR)=1/2(5)(5)



That is relevant so that you can conclude that PQ can act as a height to the base PR in the area formula, i.e, is it the perpendicular from the opposite vertex on to this side.
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Manager
Manager
avatar
Status: Last few days....Have pressed the throttle
Joined: 20 Jun 2010
Posts: 57
WE 1: 6 years - Consulting
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 23 Nov 2010, 18:38
8
6
Direct formula for finding area of a triangle in coordinate system

1/2 { (x1-x2).(y2-y3) - (y1-y2).(x2-x3) }

When we have all the coordinate points of vertices, we can directly substitute and get the area
=>
substituting above, we get:

1/2 {(-3)(1) - (-4).(7)} = 12.5 - (A)
_________________

Consider giving Kudos if my post helps in some way

Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1820
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 21 Mar 2011, 10:15
9
1
1
gmatdone wrote:
trangpham wrote:
This answer is (A) 12.5. We can easily prove PQR is a right triangle with the length of PQ and PR are 5, and QR is 5\sqrt{2}. And the area of triangle PQR = square of PQ*square of PR/2=12.5.

And Nookway gave a correct result in very good ways.

how can we prove that PQR is a rt triangle. how is PQ =PR=5


If the product of slopes of two lines is -1, those two lines are perpendicular.

Here; PR is perpendicular to PQ.

Point \(P=(x,y)=(4,0)\)
Point \(Q=(x,y)=(0,3)\)
Point \(R=(x,y)=(7,4)\)

Slope of PR\(=\frac{y_2-y_1}{x_2-x_1}=\frac{4-0}{7-4}=\frac{4}{3}\)
Slope of PQ\(=\frac{y_2-y_1}{x_2-x_1}=\frac{3-0}{0-4}=\frac{3}{-4}==\frac{-3}{4}\)

Product of slopes \(= \frac{4}{3}*\frac{-3}{4}=-1\)

Hence, \(PQ \perp PR\) and PQR is a right angled triangle.

Formula of distance between two points

Distance between two points \((x_1,y_1) & (x_2,y_2) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

Distance between point P and point Q \(=\sqrt{(3-0)^2+(0-4)^2} = \sqrt{9+16} = \sqrt{25} = 5\)
Likewise,
Distance between point P and point R \(=\sqrt{(4-0)^2+(7-4)^2} = \sqrt{16+9} = \sqrt{25} = 5\)

Area of a triangle = 1/2*(PQ)*(PR) = 1/2*5*5=12.5

Ans: "A"

Please visit the following link for more on coordinate geometry:
http://gmatclub.com/forum/math-coordinate-geometry-87652.html
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Intern
Intern
User avatar
Status: Don't worry about finding inspiration. It eventually come >>>>>>>
Joined: 31 May 2011
Posts: 23
Location: Î Ñ D Ï Â
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 06 Jun 2011, 03:59
4
1
by calculating area of different different region is a good approach but not effective when you just have 2 sec. left.
I have generated one effective way to solve these type of problem.
here we know that Q has coordinates (0,3) so measure it roughly through your pencil or pen, now we have one task left that is to measure height of a triangle.
So from the measured distance we can predict the height of a triangle which comes to be 3.60 approx. in this question thus Area will be 12.6(approx.) hence option A is 99.99% correct.
Hopefully you will enjoy to use this approach!
Current Student
avatar
Joined: 26 May 2005
Posts: 505
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 11 Jun 2011, 10:14
1
nss123 wrote:
See attached diagram.

In the rectangular coordinate system above, the area of triangular region PQR is:

- 12.5
- 14
- 10[square_root]2
- 16
- 25

This question is from the GMAT Prep Test #1 Question bank. I cannot figure out how to approach the problem and what to look at on the coordinate system.

Thanks for your help.


i would use the formula;
1/2 * mod [ x1(y2-y3)+ x2(y3-y1)+x3(y1-y2)]
1/2mod(-25)
12.5
Manager
Manager
avatar
Joined: 13 Aug 2012
Posts: 95
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 25 Jun 2013, 21:17
1
I could do the sum easily by using the following formula 1/2[x1(y2-y3)+x2(y3-y1)+x3(y1-y2)]. This is the easiest and the fastest method acc to me
Intern
Intern
avatar
Joined: 22 Jul 2013
Posts: 16
Concentration: International Business, Marketing
GPA: 3.89
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 10 May 2014, 01:06
MrMicrostrip wrote:
by calculating area of different different region is a good approach but not effective when you just have 2 sec. left.
I have generated one effective way to solve these type of problem.
here we know that Q has coordinates (0,3) so measure it roughly through your pencil or pen, now we have one task left that is to measure height of a triangle.
So from the measured distance we can predict the height of a triangle which comes to be 3.60 approx. in this question thus Area will be 12.6(approx.) hence option A is 99.99% correct.
Hopefully you will enjoy to use this approach!


This is a great way to think about this. Kudos to you thanks so much! I hit this problem within the last minute of my practice exam and had to guess. Will think about this if something like it pops up again!
Intern
Intern
avatar
Joined: 08 Sep 2015
Posts: 3
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 24 Sep 2015, 23:55
I have applied the formulas, but still not clear on this problem. please help
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51223
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 25 Sep 2015, 00:08
Intern
Intern
User avatar
Joined: 14 Mar 2015
Posts: 33
Schools: ISB '18
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 27 Sep 2015, 05:29
4
akriti1 wrote:
I have applied the formulas, but still not clear on this problem. please help


what formula did you apply.

If you calculate -
RP = \(\sqrt{(7-4)^2 + (4-0) ^2}\) = \(\sqrt{(3)^2 + (4) ^2}\) = 5
similarly,
PQ = \(\sqrt{(4-0)^2 + (0-3) ^2}\) = \(\sqrt{(4)^2 + (4) ^2}\) = 5

and,
QR = \(\sqrt{(0-7)^2 + (3-4) ^2}\) = \(\sqrt{(7)^2 + (1) ^2}\) = \(\sqrt{50}\) = 5\(\sqrt{2}\)

So, you can see from the length of the sides, that the triangle is right angled at P.

So, the area will be -
\(\frac{1}{2} (base * height)\) = \(\frac{1}{2}(5 * 5)\) = 12.5
_________________

It ain’t about how hard you hit. It’s about how hard you can get hit and keep moving forward;
how much you can take and keep moving forward.

That’s how winning is done!

Intern
Intern
avatar
Joined: 06 Mar 2016
Posts: 2
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 10 Mar 2016, 15:12
Do not overwhelm yourself with unnecessary and time-consuming fomulas. There are two common types of triangles on the GMAT, besides 30-60-90 and 45-45-90. The 3:4:5 and 5:12:13 and the apply with multiples.

In this case, the base of the triangle on the right would be 3 (7 - 4) and the height 4, therefore the hypotenuse must be 5. So now we have the base for our formula. For the height, focus on the triangle on the left, which base would be 4 and height 3, therefore its hypotenuse must be 5. Now we can apply the formula. Area= 1/2 * 5 * 5 = 12,5.

Option A

Hope it helps!
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 31 Aug 2016, 15:12
In the rectangular coordinate system above, the area of triangular region PQR is

(A) 12.5
(B) 14
(C) 10√2
(D) 16
(E) 25

We begin by drawing a rectangle that circumscribes the given triangle, creating 3 right triangles, which we label as A, B, and C. Notice that each of these 3 triangles is a right triangle. To determine the area of triangular region PQR, we can subtract the combined areas of triangles A, B, and C from the area of the rectangle.

Image

Let’s determine the area of each right triangle.

Triangle A:

Area = base x height x 1/2

A = 7 x 1 x ½ = 3.5

Triangle B:

A = 4 x 3 x ½ = 6

Triangle C:

A = 3 x 4 x ½ = 6

The sum of the areas of triangles A, B, and C is 3.5 + 6 + 6 = 15.5

Finally we need the area of the rectangle:

Area = length x width

Area = 7 x 4 = 28.

So the area of triangle PQR is 28 – 15.5 = 12.5.

Answer: A
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Manager
Manager
User avatar
S
Joined: 22 Nov 2016
Posts: 211
Location: United States
Concentration: Leadership, Strategy
GPA: 3.4
Reviews Badge
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 04 Jul 2017, 11:18
If a triangle is inscribed in a rectangle, its area will be exactly half of the area of the rectangle.

Now lets assume the point Q = (0,4) instead of (0,3) In this case the area of triangle PQR = \(\frac{Area of the imaginary rectangle}{2} = 14\)

According to me the maximum area of this triangle is 14 but it is not 14 because Q = (0,3). The only answer less than 14 is A
_________________

Kudosity killed the cat but your kudos can save it.

Intern
Intern
avatar
B
Joined: 16 Nov 2017
Posts: 7
Re: In the rectangular coordinate system above, the area of triangular  [#permalink]

Show Tags

New post 15 Dec 2017, 07:36
MrMicrostrip wrote:
by calculating area of different different region is a good approach but not effective when you just have 2 sec. left.
I have generated one effective way to solve these type of problem.
here we know that Q has coordinates (0,3) so measure it roughly through your pencil or pen, now we have one task left that is to measure height of a triangle.
So from the measured distance we can predict the height of a triangle which comes to be 3.60 approx. in this question thus Area will be 12.6(approx.) hence option A is 99.99% correct.
Hopefully you will enjoy to use this approach!



It is a good approach, the way I solved it was:

the base is 7 (fact). the height is no more than 4 and no less than 3 (fact) so the area:

\(21*0.5 < A < 28*0.5\)

So answer MUST be between 10.5 and 14. only one answer fits
GMAT Club Bot
Re: In the rectangular coordinate system above, the area of triangular &nbs [#permalink] 15 Dec 2017, 07:36

Go to page    1   2    Next  [ 24 posts ] 

Display posts from previous: Sort by

In the rectangular coordinate system above, the area of triangular

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.