GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Oct 2019, 12:47 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  Is the nth root of n greater than the cube root of 3?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Manager  Joined: 06 Jun 2014
Posts: 85
Location: United States
Concentration: Finance, General Management
GMAT 1: 450 Q27 V21 GPA: 3.47
Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

3 00:00

Difficulty:   5% (low)

Question Stats: 86% (01:10) correct 14% (01:11) wrong based on 114 sessions

HideShow timer Statistics

Is the nth root of n greater than the cube root of 3?

1) The nth root of n is equal to the 4th root of 4
2) The nth root of n is equal to the square root of 2
GMAT Club Legend  V
Joined: 12 Sep 2015
Posts: 4009
Re: Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

1
rainac wrote:
Is the nth root of n greater than the cube root of 3?

The nth root of n is equal to the 4th root of 4
The nth root of n is equal to the square root of 2

IMPORTANT: This question illustrates a situation in which we need not perform any calculations. Instead, we need only recognize that we COULD perform calculations, which would allow us to determine whether or not a statement is sufficient.

Target question: Is (nth root of n) greater than (cube root of 3)?

Statement 1: The nth root of n is EQUAL TO the 4th root of 4
"EQUAL TO" is key here.
Since we COULD determine the exact value of the 4th root of 4 (which is equal to nth root of n), and we COULD determine the exact value of the cube root of 3, we could definitely determine whether (nth root of n) is greater than (cube root of 3)
Since we can answer the target question with certainty, statement 1 is SUFFICIENT

Statement 2: The nth root of n is EQUAL TO the square root of 2
Once again, we have "EQUAL TO"
So, we COULD determine the exact value of the √2 (which is equal to nth root of n), and we COULD determine the exact value of the cube root of 3.
So, we could definitely determine whether (nth root of n) is greater than (cube root of 3)
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Cheers,
Brent
_________________
CEO  D
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2978
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

1
zxcvbnmas wrote:
Is the nth root of n greater than the cube root of 3?

1) The nth root of n is equal to the 4th root of 4
2) The nth root of n is equal to the square root of 2

Question : Is $$n^{1/n} > n^{1/3}$$?

HINT: To answer the question we require some information about sign of n and range of values of n

Statement 1: $$n^{1/n} = 4^{1/4}$$
This is possible only for n = 4, Hence
SUFFICIENT

Statement 2: $$n^{1/n} = 2^{1/2}$$
This is possible only for n = 4, Hence
SUFFICIENT

IMPORTANT: I would like to mark this question as BAD and INVALID question for a test like GMAT.

GMAT never gives information in two statements that have even possibility of contradicting with each other i.e. value of n as per 2nd statement can't be 4 if the first statement has already brought it as 4. However 2nd statement may have more possible value of n in addition to 4 if the 1st statement has already brought us to get the value of n as 4

_________________
Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION
Math Revolution GMAT Instructor V
Joined: 16 Aug 2015
Posts: 8017
GMAT 1: 760 Q51 V42 GPA: 3.82
Re: Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Is the nth root of n greater than the cube root of 3?

1) The nth root of n is equal to the 4th root of 4
2) The nth root of n is equal to the square root of 2

When you modify the original condition and the question, n^3>3^n? is calculated by multiplying 3n to the both equation, n^1/n>3^1/3. Then, there is 1 variable(n), which should match with the number of equations. So you need 1 more equation. For 1) 1 equation, for 2) 1 equation, which is likely to make D the answer.
For 1), when n=4, 4^3>3^4, which is no and sufficient.
For 2), when m=2, 4^2>2^4, which is also no and sufficient.
Therefore, the answer is D.

-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________
Manager  Joined: 06 Jan 2015
Posts: 58
Re: Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

I completely agree this is an odd question and I haven't found anything like it in the OG questions. Having said so:

1. It clearly identifies what The nth root of n is equal to, therefore you could check the inequility of the steam SUFFICIENT
2. It clearly identifies what The nth root of n is equal to, therefore you could check the inequility of the steam SUFFICIENT

GMATinsight wrote:
zxcvbnmas wrote:
Is the nth root of n greater than the cube root of 3?

1) The nth root of n is equal to the 4th root of 4
2) The nth root of n is equal to the square root of 2

Question : Is $$n^{1/n} > n^{1/3}$$?

HINT: To answer the question we require some information about sign of n and range of values of n

Statement 1: $$n^{1/n} = 4^{1/4}$$
This is possible only for n = 4, Hence
SUFFICIENT

Statement 2: $$n^{1/n} = 2^{1/2}$$
This is possible only for n = 4, Hence
SUFFICIENT

IMPORTANT: I would like to mark this question as BAD and INVALID question for a test like GMAT.

GMAT never gives information in two statements that have even possibility of contradicting with each other i.e. value of n as per 2nd statement can't be 4 if the first statement has already brought it as 4. However 2nd statement may have more possible value of n in addition to 4 if the 1st statement has already brought us to get the value of n as 4

_________________
"No pain, no gain
Target Test Prep Representative D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8109
Location: United States (CA)
Re: Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

zxcvbnmas wrote:
Is the nth root of n greater than the cube root of 3?

1) The nth root of n is equal to the 4th root of 4
2) The nth root of n is equal to the square root of 2

We need to determine whether ^n√n > ^3√3.

Statement One Alone:

The nth root of n is equal to the 4th root of 4

Since ^n√n = ^4√4, the question becomes: is ^4√4 > ^3√3?

Let’s raise both sides to the 12th power:

(^4√4)^12 > (^3√3)^12 ?

4^3 > 3^4 ?

64 > 81 ?

We see that the answer is no. Statement one alone is sufficient to answer the question.

Statement Two Alone:

The nth root of n is equal to the square root of 2

Thus, we know that:

Since ^n√n = √2, the question becomes: is √2 > ^3√3?

Let’s raise both sides to the 6th power:

(√2)^6 > (^3√3)^6 ?

2^3 > 3^2 ?

8 > 9 ?

We see that the answer is no again. Statement two alone is also sufficient to answer the question.

_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Non-Human User Joined: 09 Sep 2013
Posts: 13275
Re: Is the nth root of n greater than the cube root of 3?  [#permalink]

Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: Is the nth root of n greater than the cube root of 3?   [#permalink] 14 Oct 2019, 11:28
Display posts from previous: Sort by

Is the nth root of n greater than the cube root of 3?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  