Last visit was: 19 Nov 2025, 15:06 It is currently 19 Nov 2025, 15:06
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
ssriva2
Joined: 22 Aug 2014
Last visit: 31 Dec 2015
Posts: 95
Own Kudos:
Given Kudos: 49
Posts: 95
Kudos: 37
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
Kitzrow
Joined: 14 Jan 2015
Last visit: 31 May 2015
Posts: 6
Posts: 6
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Kitzrow,

You have to note the difference between "factors" and "prime factors"

36 has the following FACTORS:
1 and 36
2 and 18
3 and 12
4 and 9
6

So, there are 9 factors and the sum of those factors is 91.

This example matches the prior statements - 36 has an ODD number of factors and the sum of those factors is ODD.

GMAT assassins aren't born, they're made,
Rich
User avatar
CrackverbalGMAT
User avatar
Major Poster
Joined: 03 Oct 2013
Last visit: 19 Nov 2025
Posts: 4,844
Own Kudos:
Given Kudos: 225
Affiliations: CrackVerbal
Location: India
Expert
Expert reply
Posts: 4,844
Kudos: 8,945
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A perfect square represents the square of an integer.

Questions on the properties of a perfect square are quite common on the GMAT. So, it’s important that you devote enough time to learn the unique characteristics of perfect squares, so that you will be able to deal with these questions. A good way to start would be to memorise the first 25 perfect squares and observe patterns.

Two important properties that we will need to use to solve this question are:

1) A perfect square always has an odd number of distinct factors. The vice-versa is true as well; any number that has an odd number of distinct factors has to be a perfect square.
For example, the number 4 has 3 factors viz., 1,2 and 4; similarly, the number 16 has 5 factors viz. 1, 2, 4, 8 and 16.

2) A perfect square always has an odd number of odd factors and an even number of even factors. This means that the sum of the factors of a perfect square is going to be odd.

Taking the same numbers, 4 and 16, we see that the sum of the factors of 4 is 7 and the sum of the factors of 16 is 31.

If there are odd number of odd factors, the sum of these will be odd; even number of even factors will add up to an even number. Adding an odd sum with an even sum will give us the final sum as odd. That is how the sum of the factors of a perfect square is always odd.

Let us analyse the statements now.

Statement I alone says that the number of distinct factors of N is even. This only means that N is NOT a perfect square. We can answer the question with a NO. Remember that a NO is as good an answer as a YES, in a Yes-No type of DS question.

Statement I alone is sufficient. Possible answer options are A or D. Answer options B, C and E can be eliminated.

Statement II alone says that the sum of all distinct factors is even. Again, this means that N is NOT a perfect square and hence we can answer the question with a NO.
Statement II alone is sufficient. Answer option A can be eliminated.
The correct answer option is D.

Hope that helps!
User avatar
TA396
Joined: 08 May 2022
Last visit: 19 Nov 2023
Posts: 7
Given Kudos: 84
Location: India
Posts: 7
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Tips about the perfect square:
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

NEXT:
There is a formula for Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

Back to the original question:

Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even --> let's say \(n=a^p*b^q*c^r\), given that the number of factors of \(n\) is even --> \((p+1)(q+1)(r+1)=even\). But as we concluded if \(n\) is a perfect square then powers of its primes \(p\), \(q\), and \(r\) must be even, and in this case number of factors would be \((p+1)(q+1)(r+1)=(even+1)(even+1)(even+1)=odd*odd*odd=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

(2) The sum of all distinct factors of N is even --> if \(n\) is a perfect square then (according to 3) sum of odd factors would be odd and sum of even factors would be even, so sum of all factors of perfect square would be \(odd+even=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

Answer: D.

Hope it helps.

mbaMission
Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even.
(2) The sum of all distinct factors of N is even.


hi, i had a doubt with respect to statement 1:
if we take the example of a prime number, say 7, its factors are 7 and 1
therefore the number of distinct factors is 2 ie even

in that case, how would statement 1 be sufficient to prove that N is a perfect square?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,363
Kudos
Add Kudos
Bookmarks
Bookmark this Post
TA396
Bunuel
Tips about the perfect square:
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

NEXT:
There is a formula for Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

Back to the original question:

Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even --> let's say \(n=a^p*b^q*c^r\), given that the number of factors of \(n\) is even --> \((p+1)(q+1)(r+1)=even\). But as we concluded if \(n\) is a perfect square then powers of its primes \(p\), \(q\), and \(r\) must be even, and in this case number of factors would be \((p+1)(q+1)(r+1)=(even+1)(even+1)(even+1)=odd*odd*odd=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

(2) The sum of all distinct factors of N is even --> if \(n\) is a perfect square then (according to 3) sum of odd factors would be odd and sum of even factors would be even, so sum of all factors of perfect square would be \(odd+even=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

Answer: D.

Hope it helps.

mbaMission
Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even.
(2) The sum of all distinct factors of N is even.


hi, i had a doubt with respect to statement 1:
if we take the example of a prime number, say 7, its factors are 7 and 1
therefore the number of distinct factors is 2 ie even

in that case, how would statement 1 be sufficient to prove that N is a perfect square?

From (1) we deduce that n cannot be a perfect square, so the answer to the question is NO. Your example, also gives a NO answer to the question, so it aligns with the deduction.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,000
Kudos
Add Kudos
Bookmarks
Bookmark this Post
TA396
Bunuel
Tips about the perfect square:
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

NEXT:
There is a formula for Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

Back to the original question:

Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even --> let's say \(n=a^p*b^q*c^r\), given that the number of factors of \(n\) is even --> \((p+1)(q+1)(r+1)=even\). But as we concluded if \(n\) is a perfect square then powers of its primes \(p\), \(q\), and \(r\) must be even, and in this case number of factors would be \((p+1)(q+1)(r+1)=(even+1)(even+1)(even+1)=odd*odd*odd=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

(2) The sum of all distinct factors of N is even --> if \(n\) is a perfect square then (according to 3) sum of odd factors would be odd and sum of even factors would be even, so sum of all factors of perfect square would be \(odd+even=odd\neq{even}\). Hence \(n\) cannot be a perfect square. Sufficient.

Answer: D.

Hope it helps.

mbaMission
Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even.
(2) The sum of all distinct factors of N is even.


hi, i had a doubt with respect to statement 1:
if we take the example of a prime number, say 7, its factors are 7 and 1
therefore the number of distinct factors is 2 ie even

in that case, how would statement 1 be sufficient to prove that N is a perfect square?

Also check out the following resources on Factors:

Blog Posts:
https://anaprep.com/number-properties-f ... -a-number/
https://anaprep.com/number-properties-r ... e-factors/

Video:
https://youtu.be/DxIH8rjhpKY
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
   1   2 
Moderators:
Math Expert
105390 posts
496 posts