tejal777 wrote:

Is \(\frac{x^n}{x^{n+1}}>\frac{x^{n+1}}{x^n}\)?

(1) x < 0

(2) n < 0

DS:

\(\frac{x^n}{x^{n+1}}>\frac{x^{n+1}}{x^n}\)

\(\frac{1}{x}>\frac{x[}{fraction]\)

Statement 1 : x<0

-1<x<0, \([fraction]1/x}>\frac{x[}{fraction]\)

x = -1, \([fraction]1/x}=\frac{x[}{fraction]\)

x<-1, \([fraction]1/x}<[fraction]x[/fraction]\)

NOT SUFFICIENTStatement 2: n<0 has no significance

NOT SUFFICIENTAnswer E
_________________

CAT 99th percentiler : VA 97.27 | DI-LR 96.84 | QA 98.04 | OA 98.95

UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu

Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)

What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".