Magophon wrote:
Here is the method to never fail to answer correctly Diophantine-equations-related Data Sufficiency problems.
1. First, be sure that the 2 variables must be non-negative integers or positive integers and that each statement provides a linear equation relating the 2 variables. Furthermore, be sure that the 2 equations are not equivalent (2x+3y=20 and 6x+9y=60 are equivalent) and are reduced to the form: ax + by = c whith integral coefficients and constant term such that GCF (a,b)=1.
2. Find an initial Solution: "Take advantage" of the fact that statements never contradict each other and thus system of equations constructed with both statements have always at least one solution. So resolve the system of equations.
3. Unicity: Once you arrive to a solution, say (x0, y0), go back to the first statement alone, for example, and check the unicity of the solution using only that statement by applying the test below. In case the solution is unique, statement 2 is superfluous and statement 1 is sufficient. The answer is A or D. In case the solution is not unique the answer is B, C or E.
Apply the test on statement (2). And update your answer.
If there is more than one solution using each statement alone then the answer is C.
-------------------------------------------------------------------------------------------------------------------------------------------------
Now here is the rule that indicates whether or not a non-negative integer solution is unique to an equation:
Suppose the equation be: ax+by=c (reduced with a, b, c positive integers. i.e. GCF(a,b)=1)
If (x0-b)<0 AND (y0-a)<0 then there is no other non-negative integer solution than (x0, y0) and the corresponding statement is sufficent.
If (x0-b)>=0 OR (y0-a)>=0 then other non-negative integers solutions exist and the statement is not sufficient.
If the variables must be positive the test is:
If (x0 - b)<=0 AND (y0 - a)<=0 then there is no other positive integer solution than (x0, y0) and the corresponding statement is sufficent.
If (x0 - b)>0 OR (y0 - a)>0 then other positive integers solutions exist and the statement is not sufficient.
Note: The test is to subtract each coefficient from the solution found for the opposite variable.
--------------------------------------------------------------------------------------------------------------------------------------------------
Let's apply this to a real GMAT problem:
A man buys some juice boxes. The boxes are from two different brands, A and B. How many boxes of brand A did the man buy if he bought $5.29 worth of boxes?
(1) The price of brand A box is $0.81 and the price of brand B box is $0.31
(2) The total amount of boxes is 9
Variables here must be positive integers -number of juice boxes- since it is suggested that some juice boxes are from brand A and the rest from brand B.
1. The equations provided are:
(1) 0.81A + 0.31B = 5.29.
(2) A + B = 9
Which are reduced to:
(1) 81A + 31B = 529
(2) A + B = 9,
which is a system of reduced, linear, non-equivalent equations.
2. Find an initial Solution:
(1) 81A + 31B = 529. GCF(31, 81)=1.
(2) A + B = 9
Mutliplying (2) by 31 and subtracting it from (1) we get:
50A=250 so A=5 and B=4.
An initial solution is (5, 4)
3. Unicity:
Unicity for statement (1):
81(5) + 31(4) = 529
Since
(5 - 31) <=0 AND (4 - 81)<=0 then there no other positive solution than (5, 4) so statement (1) is sufficient.
Unicity for statement (2):
It is obvious that statement (2) alone is not sufficient but the test is still applicable.
1(5) + 1(4) = 9
Since
(5 - 1) >0 OR (4 - 1) > 0 then there are other positive solutions than (5, 4) so statement (2) is not sufficient.
Answer A.
Hope this helps.
Would this still be the case if the equation were written 0.81x + 0.31y = 5.29
(x,y) remains (5,4)
but (5 - 0.31) AND (4-0.81) are both greater than 0
but there is no other solution