Last visit was: 15 Jul 2025, 06:48 It is currently 15 Jul 2025, 06:48
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Jul 2025
Posts: 102,576
Own Kudos:
Given Kudos: 98,190
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,576
Kudos: 741,556
 [33]
2
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
Most Helpful Reply
avatar
20043856
Joined: 27 Oct 2015
Last visit: 03 Jul 2018
Posts: 3
Own Kudos:
12
 [10]
Given Kudos: 6
Posts: 3
Kudos: 12
 [10]
6
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
User avatar
Kurtosis
User avatar
Current Student
Joined: 13 Apr 2015
Last visit: 10 Nov 2021
Posts: 1,400
Own Kudos:
4,980
 [5]
Given Kudos: 1,228
Location: India
Products:
Posts: 1,400
Kudos: 4,980
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
User avatar
pushpitkc
Joined: 26 Feb 2016
Last visit: 19 Feb 2025
Posts: 2,819
Own Kudos:
5,871
 [2]
Given Kudos: 47
Location: India
GPA: 3.12
Posts: 2,819
Kudos: 5,871
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
John works twice as fast as Peter, but John takes a half hour break after every one hour worked while Peter takes an hour break after every two hours worked. If John can complete the task in 5 hours working alone with no breaks, how long will it take both to complete the task if they start working together while maintaining their break habits?

A. 3 hours and 20 minutes
B. 4 hours and 30 minutes
C. 4 hours and 40 minutes
D. 4 hours and 45 minutes
E. 5 hours

Let us assume the total work to be 1000 units

Since John completes the work in 5 hours(without any breaks), he must be doing 200 units/hour

As John works twice as fast as Peter, the rate at which Peter does the work must be 100 units/hour

Rate at which they take breaks are as follows:
John takes a half an hour break for an hour of work
Peter takes an hour break for two hours of work.

John does 200 units in \(1\frac{1}{2}\) hour, effectively doing 600 units in \(4\frac{1}{2}\) hours.

Peter does 200 units in 3 hours. In the additional \(1\frac{1}{2}\) hour of work, he would have completed 150 units of work.
Therefore, Peter does 350 units in \(4\frac{1}{2}\) hours

In \(4\frac{1}{2}\) hours John and Peter would have completed 950 units of work.
For the remaining 50 units, working at 300 units/hour, they would take an additional 10 minutes.

Therefore, the total time taken to complete the 1000 units of work is 4 hours and 40 minutes(Option C)
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,996
Own Kudos:
7,936
 [2]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,996
Kudos: 7,936
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
John works twice as fast as Peter, but John takes a half hour break after every one hour worked while Peter takes an hour break after every two hours worked. If John can complete the task in 5 hours working alone with no breaks, how long will it take both to complete the task if they start working together while maintaining their break habits?

A. 3 hours and 20 minutes
B. 4 hours and 30 minutes
C. 4 hours and 40 minutes
D. 4 hours and 45 minutes
E. 5 hours

The rate of John is 1/5 and the rate of Peter is 1/10.

Their combined rate, with no breaks is, 1/5 + 1/10 = 2/5 + 1/10 = 3/10.

For the first 3 hours of working together, we see that each would have taken a one-hour break and thus each worked only 2 hours. Thus, they finished 2 x 3/10 = 6/10 of the job.

During the next hour, hour 4, they both worked for the full hour; thus, they finished another 3/10 of the job and so far they finished 6/10 + 3/10 = 9/10 of the job.

During the following hour, hour 5, John worked only half an hour (since he took a half-hour break) while Peter worked the full hour; thu,s they would have completed another ½(1/5) + 1/10 = 2/10 of the job. However, by the end of hour 5, we see that they would have completed 9/10 + 2/10 = 11/10 or more than 1 entire job. Thus we need to push the time back.

So let’s only focus on the first 30 minutes of hour 5; John would not be working since he’s on his half-hour break, while Peter worked the entire 30 minutes. Thus, Peter would have completed another ½(1/10) = 1/20 of the job. By the end of the first 30 minutes of hour 5, we see that they would have completed 9/10 + 1/20 = 19/20 of the job.

We see that it takes more than 4 hour 30 minutes but less than 5 hours to complete this job. We also see that there are two answer choices that are between these two times. Let’s analyze choice C, 4 hours and 40 minutes, first. In other words, let’s see how much more work they complete in the extra 10 minutes.

In the extra 10 minutes, or ⅙ of an hour, they were both working; thus, they completed ⅙(1/5) + ⅙(1/10) = 1/30 + 1/60 = 3/60 = 1/20 of the job. Add this to the 19/20 of the job they completed in 4 hours 30 minutes, and we see that they would have completed exactly one entire job.

Answer: C
User avatar
teone83
Joined: 01 Dec 2017
Last visit: 30 Oct 2021
Posts: 10
Own Kudos:
Given Kudos: 15
Location: Italy
Schools: IMD Jan'18
GMAT 1: 680 Q46 V38
GPA: 4
Schools: IMD Jan'18
GMAT 1: 680 Q46 V38
Posts: 10
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
John works twice as fast as Peter, but John takes a half hour break after every one hour worked while Peter takes an hour break after every two hours worked. If John can complete the task in 5 hours working alone with no breaks, how long will it take both to complete the task if they start working together while maintaining their break habits?

A. 3 hours and 20 minutes
B. 4 hours and 30 minutes
C. 4 hours and 40 minutes
D. 4 hours and 45 minutes
E. 5 hours

Hi Bunuel , any suggestion on how to calculate this in a quicker way? Using some algebra or work rate formula?
I calculated the time it would took to do the job without any breaks which is 3 hours and 20 minutes , and then I tried to add the "break time" , but I got lost at some point.....I don't think is the right way to do it...
avatar
gyanapinku
Joined: 10 Jul 2017
Last visit: 08 Sep 2022
Posts: 9
Own Kudos:
Given Kudos: 114
Posts: 9
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
J=2P
J takes 5hrs so P ll take 10hrs
Let total work be 10units(lcm of 5 n 10)
J-5 hrs so 2units/hr
P-10 hrs so 1unit/hr
1st hr-3units
2nd hr-2units
3rd hr-1unit
4th hr-3 units
In next 30min
J- 0 units(rest)
P- 0.5 units
So 10-9.5=0.5 units they have to do together without rest.

Without rest they take 10/3hrs for completing 10 units, so for 0.5 units they lol take (10/3)*(1/10)*(1/2)=(1/6)hr= 10 min

So total 4hrs 40min(C)


Sent from my CPH1609 using GMAT Club Forum mobile app
avatar
gyanapinku
Joined: 10 Jul 2017
Last visit: 08 Sep 2022
Posts: 9
Own Kudos:
1
 [1]
Given Kudos: 114
Posts: 9
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Staphyk
Hello! Bunuel is there a much quicker way to solve question like this?


Sent from my iPhone using GMAT Club Forum
U can try hourly calculation,easiest method.
20043856
Easiest method--
John can complete work in 5 hours (Given in the statement). Hence, we can derive that Peter can complete same work in 10 hours (John works twice as fast as Peter).
Now, It's provided that

""John takes a half hour break after every one hour worked." 5 hours job now will be completed in 7 hours by John(BE CAUTIOUS. It wont be 7.5 hours).....

"while Peter takes an hour break after every two hours worked." 10 hours job now will be completed in 14 hours by Peter(BE CAUTIOUS. It won't be 15 hours).....

To find new combined time-- 7*14/21 hours---->4 hours and 40 minutes


Sent from my CPH1609 using GMAT Club Forum mobile app
avatar
Bigshorty
Joined: 20 Mar 2018
Last visit: 24 Jul 2018
Posts: 1
Own Kudos:
1
 [1]
Given Kudos: 26
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Rj = 1/5 = 2/10
Rp = 1/10

It is known that John takes a 30' brake every one hour of work, hence his productivity (Rate of work) decreases. By taking into consideration the breaks, John needs 5 working hours plus 4*30' breaks (no need to take a break when the job is done). Having said that:

Rj' = 1/7
Rp' = 1/14 (Following the same logic)

R=W/t => 2/14 + 1/14 = 1/t => t = 14/3 = 4h and 2/3

D
User avatar
Staphyk
Joined: 20 Mar 2018
Last visit: 30 Jan 2022
Posts: 467
Own Kudos:
Given Kudos: 149
Location: Ghana
Concentration: Finance, Statistics
GMAT 1: 710 Q49 V39
Products:
GMAT 1: 710 Q49 V39
Posts: 467
Kudos: 372
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gyanapinku
Staphyk
Hello! Bunuel is there a much quicker way to solve question like this?


Sent from my iPhone using GMAT Club Forum
U can try hourly calculation,easiest method.
20043856
Easiest method--
John can complete work in 5 hours (Given in the statement). Hence, we can derive that Peter can complete same work in 10 hours (John works twice as fast as Peter).
Now, It's provided that

""John takes a half hour break after every one hour worked." 5 hours job now will be completed in 7 hours by John(BE CAUTIOUS. It wont be 7.5 hours).....

"while Peter takes an hour break after every two hours worked." 10 hours job now will be completed in 14 hours by Peter(BE CAUTIOUS. It won't be 15 hours).....

To find new combined time-- 7*14/21 hours---->4 hours and 40 minutes


Sent from my CPH1609 using GMAT Club Forum mobile app
please how did you get the 7hrs and 14hrs and why not 7.5hrs and 15hrs


Sent from my iPhone using GMAT Club Forum mobile app
avatar
rahulkashyap
Joined: 09 Oct 2015
Last visit: 24 Feb 2019
Posts: 170
Own Kudos:
Given Kudos: 28
Posts: 170
Kudos: 72
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bigshorty
Rj = 1/5 = 2/10
Rp = 1/10

It is known that John takes a 30' brake every one hour of work, hence his productivity (Rate of work) decreases. By taking into consideration the breaks, John needs 5 working hours plus 4*30' breaks (no need to take a break when the job is done). Having said that:

Rj' = 1/7
Rp' = 1/14 (Following the same logic)

R=W/t => 2/14 + 1/14 = 1/t => t = 14/3 = 4h and 2/3

D
is this a fool proof way of solving this type of question?
Bunuel chetan2u
User avatar
Izzyjolly
Joined: 06 Nov 2016
Last visit: 15 Sep 2023
Posts: 49
Own Kudos:
Given Kudos: 151
Location: Viet Nam
Concentration: Strategy, International Business
GPA: 3.54
Posts: 49
Kudos: 104
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Staphyk
gyanapinku
Staphyk
Hello! Bunuel is there a much quicker way to solve question like this?


Sent from my iPhone using GMAT Club Forum
U can try hourly calculation,easiest method.
20043856
Easiest method--
John can complete work in 5 hours (Given in the statement). Hence, we can derive that Peter can complete same work in 10 hours (John works twice as fast as Peter).
Now, It's provided that

""John takes a half hour break after every one hour worked." 5 hours job now will be completed in 7 hours by John(BE CAUTIOUS. It wont be 7.5 hours).....

"while Peter takes an hour break after every two hours worked." 10 hours job now will be completed in 14 hours by Peter(BE CAUTIOUS. It won't be 15 hours).....

To find new combined time-- 7*14/21 hours---->4 hours and 40 minutes


Sent from my CPH1609 using GMAT Club Forum
please how did you get the 7hrs and 14hrs and why not 7.5hrs and 15hrs


Sent from my iPhone using GMAT Club Forum


Because the last half hour (for John) and the last hour (for Peter) are break time when they already finished their work.

In case of John:
He works from 0h to 1h, takes break from 1h to 1.5h, then work from 1.5h to 2.5h, and so on.

0 -- work -- 1 -- break -- 1.5 -- work -- 2.5 -- break -- 3 -- work -- 4 -- break -- 4.5 -- work -- 5.5 -- break -- 6 -- work -- 7-- break -- 7.5

John complete the task in 7 hours. Break time from 7h to 7.5h should not be calculated in the time required for John to complete the task while maintaining his break habit.

The same logic is applied to the case of Peter.

Hope it helps.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,405
Own Kudos:
Posts: 37,405
Kudos: 1,013
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102576 posts
PS Forum Moderator
691 posts