Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 15 Jul 2019, 23:23

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

M01-19

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56234
Re: M01-19  [#permalink]

Show Tags

New post 25 Jun 2018, 02:51
sanjay1810 wrote:
Hi Bunuel,

Can you please elaborate on how st 2 is not sufficient ?

x - y = 9
( \sqrt{x} + \sqrt{y} ) ( \sqrt{x} - \sqrt{y} ) = 9 = 9 . 1 OR 3. 3
Since it's given the x> y >0, sum of two numbers cannot be equal to difference of the same two numbers. So 3,3 is out. So 9, 1 is still left.
Both numbers positive, one greater than the other,
so
\sqrt{x} + \sqrt{y} = 9
\sqrt{x} - \sqrt{y} = 1
this can be solved and we get the ans which obviously i wrong as per OA.

What's wrong here and why is 2 not sufficient?

Thanks.


You are assuming that \(\sqrt{x} + \sqrt{y}\) and \(\sqrt{x} - \sqrt{y}\) are integers, which is not given. Why cannot \(\sqrt{x} + \sqrt{y}\) be 81 and \(\sqrt{x} - \sqrt{y}\) be 1/9? x - y = 9 has infinitely many solutions, so you cannot get the single numerical value of \(\sqrt{x} - \sqrt{y}\)
_________________
Intern
Intern
avatar
B
Joined: 19 Nov 2012
Posts: 28
Re: M01-19  [#permalink]

Show Tags

New post 25 Jun 2018, 04:01
Bunuel wrote:

You are assuming that \(\sqrt{x} + \sqrt{y}\) and \(\sqrt{x} - \sqrt{y}\) are integers, which is not given. Why cannot \(\sqrt{x} + \sqrt{y}\) be 81 and \(\sqrt{x} - \sqrt{y}\) be 1/9? x - y = 9 has infinitely many solutions, so you cannot get the single numerical value of \(\sqrt{x} - \sqrt{y}\)


Fell for the trap. Thanks Bunuel as always for the quick response - eye opener!
Manager
Manager
User avatar
S
Joined: 02 Mar 2018
Posts: 65
Location: India
GMAT 1: 640 Q51 V26
GPA: 3.1
Reviews Badge
M01-19  [#permalink]

Show Tags

New post Updated on: 01 Aug 2018, 05:18
How do we solve the equation from √x-√y=2

Originally posted by gsingh0711 on 31 Jul 2018, 16:20.
Last edited by gsingh0711 on 01 Aug 2018, 05:18, edited 1 time in total.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56234
Re: M01-19  [#permalink]

Show Tags

New post 31 Jul 2018, 20:22
Manager
Manager
User avatar
S
Joined: 02 Mar 2018
Posts: 65
Location: India
GMAT 1: 640 Q51 V26
GPA: 3.1
Reviews Badge
Re: M01-19  [#permalink]

Show Tags

New post 01 Aug 2018, 05:23
Bunuel wrote:
gsingh0711 wrote:
How do we solve the quation from √−y√=2


Please learn how to format math formulae: https://gmatclub.com/forum/rules-for-po ... l#p1096628


Thanks for sharing the link. Hope the expression is decipherable now. please clarify my doubt pertaining to the question.
Intern
Intern
avatar
S
Joined: 30 Apr 2018
Posts: 34
Location: India
Concentration: Finance, General Management
GMAT 1: 760 Q51 V42
GPA: 4
WE: Engineering (Computer Software)
Premium Member
Re: M01-19  [#permalink]

Show Tags

New post 02 Sep 2018, 11:49
Hi Bunuel,
for the second statement, could you please let me know how the below approach is incorrect
Statement 2: x -y =9
This can be expanded as
\((\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})\) = 9
The Right Hand Side can be either -3 * -3, -1 * -9, 1*9, 3*3
Since it is already given that both x and y are positive, we are left with only 3*3 and 1*9. Also, since the sum and difference of two numbers cannot be the same unless one or both are 0, 3*3 is also eliminated. Hence, we are left with 9*1 thereby, giving us a solution
\((\sqrt{x} + \sqrt{y})\) = 9 and
\((\sqrt{x} - \sqrt{y})\) = 1
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56234
Re: M01-19  [#permalink]

Show Tags

New post 02 Sep 2018, 21:28
aroraishita02 wrote:
Hi Bunuel,
for the second statement, could you please let me know how the below approach is incorrect
Statement 2: x -y =9
This can be expanded as
\((\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})\) = 9
The Right Hand Side can be either -3 * -3, -1 * -9, 1*9, 3*3
Since it is already given that both x and y are positive, we are left with only 3*3 and 1*9. Also, since the sum and difference of two numbers cannot be the same unless one or both are 0, 3*3 is also eliminated. Hence, we are left with 9*1 thereby, giving us a solution
\((\sqrt{x} + \sqrt{y})\) = 9 and
\((\sqrt{x} - \sqrt{y})\) = 1


Check here: https://gmatclub.com/forum/m01-183530-20.html#p2083627
_________________
GMAT Club Bot
Re: M01-19   [#permalink] 02 Sep 2018, 21:28

Go to page   Previous    1   2   [ 27 posts ] 

Display posts from previous: Sort by

M01-19

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel






Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne