Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

We have system of equations with three distinct equations and three unknowns, so we can solve it. As \(x\) is squared we'll get two values for it and also two values for \(y\) and \(z\): two triplets. Hence we'll get two values for \(x^3 + y^2 + z\), one divisible by 7 and another not divisible by 7. Each statement is giving us the info to decide which triplet is right, thus both statement are sufficient on its own.

Given:

\(x^2 = y + 5\);

\(z = 2x\);

\(y = z - 2\), or which is the same \(y=(2x)-2\)

Solve for \(x\): \(x^2=(2x-2) + 5\). Rearrange: \(x^2-2x-3=0\). Either \(x=3\) or \(x=-1\)

So, the first triplet would be: \(x=3\), \(y=4\), \(z=6\). Which gives: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7;

The second triplet would be: \(x=-1\), \(y=-4\), \(z=-2\). Which gives: \(x^3 + y^2 + z=-1+16-2=13\), not divisible by 7.

(1) \(x \gt 0\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

(2) \(y = 4\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

The answer is simply B! y=4--->z=6-----> x=3 so x=-1 is clearly unacceptable. It is assumed y=4, how it is possible that y=-4?

Sorry, but I don't understand what is confusing there...

Does not x = -1, y = -4 and z = -2 satisfy the given equations?

Dear Bunuel y=-4 is contradictory with statement 2! 2)y=4 so x=-1 is not possible and as a result statement 2 is sufficient.

The correct answer to the question is D, not B! The answer choice D means that EACH statement ALONE is sufficient to answer the question asked. So, the second statement as well as the first one is sufficient ALONE.

As for your remark that y=-4 contradicts statement 2: yes, it does but we got those values based only on the info given in the stem. When then we proceed to the second statement we can reject this set (x = -1, y = -4 and z = -2) and we'll be left with the second set, which we also got from the set: x = 3, y = 4, z = 6.

Please re-read the question and the solution.
_________________

Not able to understand while using the statement (2) i.e. y=4, using this value if we put in equation x^2 = y+5then x=+3 and -3 whereas z = 6 and z = -6, using x=3, z=6 and y=9 answer from final equation is 49, which is divisible by 7 using x=-3, z=-6 and y=9 answer from final equation is 17, which is not divisible by 7 so pls let me know can answer to the question ( A )

Not able to understand while using the statement (2) i.e. y=4, using this value if we put in equation x^2 = y+5then x=+3 and -3 whereas z = 6 and z = -6, using x=3, z=6 and y=9 answer from final equation is 49, which is divisible by 7 using x=-3, z=-6 and y=9 answer from final equation is 17, which is not divisible by 7 so pls let me know can answer to the question ( A )

z = -6 is not possible (it violates y = z - 2 for y = 4). The same way x = -3 is not possible.
_________________

Here, x^2=y+5 , y=z-2, z=2x Putting 2nd and 3rd eqn in 1 we get => x^2-2x-3=0=> x=3 or x=-1 for x=3 we get y=4 and z=6 => x^3+y^2+z=49 for x=-1we get y=-4 and z=-2 since X>0 hence x can only be 3 , also since y=4 is given only 1 st condition is possible.

Here, x^2=y+5 , y=z-2, z=2x Putting 2nd and 3rd eqn in 1 we get => x^2-2x-3=0=> x=3 or x=-1 for x=3 we get y=4 and z=6 => x^3+y^2+z=49 for x=-1we get y=-4 and z=-2 since X>0 hence x can only be 3 , also since y=4 is given only 1 st condition is possible.

What I did was almost the same as Bunuel. First I solved the system of equations, getting to \(x=3\) or \(x=-1\). Then, for statement i) \(x>0\), I used \(x=3\), getting \(y=4\) and \(z=6\): \(x^3+y^2+z = 27+16+6=49\), divisible by \(7\) Now, for statement ii) \(y=4\), I just assumed that \(y=4\) is possible when \(x=3\), so \(z=6\), then the statement will be sufficient. Is my assumption correct or should I have used the \(x=-1\) for the 2nd triplet?

EDIT: The best approach was what Bunuel did. Get the two solutions and test them to see if they are divisible by 7. It could have happened that the two triplets weren't divisible by 7 (using \(x=3\) or \(x=-1\)). In this case, what option do we choose? D?
_________________

"The stock market is filled with individuals who know the price of everything, but the value of nothing." - Philip Fisher

We have system of equations with three distinct equations and three unknowns, so we can solve it. As \(x\) is squared we'll get two values for it and also two values for \(y\) and \(z\): two triplets. Hence we'll get two values for \(x^3 + y^2 + z\), one divisible by 7 and another not divisible by 7. Each statement is giving us the info to decide which triplet is right, thus both statement are sufficient on its own.

Given:

\(x^2 = y + 5\);

\(z = 2x\);

\(y = z - 2\), or which is the same \(y=(2x)-2\)

Solve for \(x\): \(x^2=(2x-2) + 5\). Rearrange:

\(x^2-2x-3=0\). Either \(x=3\) or \(x=-1\)

So, the first triplet would be: \(x=3\), \(y=4\), \(z=6\). Which gives: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7;

The second triplet would be: \(x=-1\), \(y=-4\), \(z=-2\). Which gives: \(x^3 + y^2 + z=-1+16-2=13\), not divisible by 7.

(1) \(x \gt 0\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

(2) \(y = 4\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

It was an interesting solution how you have inferred even before putting pen to paper " on of the values of the expression will be divisible by 7 & other will be not" . If this was known before setting out to solve the question then I think in this DS question knowing that any pointers to establish / confirm the nature of the triplets will be sufficient.

My point here is how do we know that both the values will not be divisible by 7. Had the question asked divisible by 5 or 19 for that matter. Does the inference remains same that one value of the expression will remain divisible & other will not in each of the case?

We have system of equations with three distinct equations and three unknowns, so we can solve it. As \(x\) is squared we'll get two values for it and also two values for \(y\) and \(z\): two triplets. Hence we'll get two values for \(x^3 + y^2 + z\), one divisible by 7 and another not divisible by 7. Each statement is giving us the info to decide which triplet is right, thus both statement are sufficient on its own.

Given:

\(x^2 = y + 5\);

\(z = 2x\);

\(y = z - 2\), or which is the same \(y=(2x)-2\)

Solve for \(x\): \(x^2=(2x-2) + 5\). Rearrange: \(x^2-2x-3=0\). Either \(x=3\) or \(x=-1\)

So, the first triplet would be: \(x=3\), \(y=4\), \(z=6\). Which gives: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7;

The second triplet would be: \(x=-1\), \(y=-4\), \(z=-2\). Which gives: \(x^3 + y^2 + z=-1+16-2=13\), not divisible by 7.

(1) \(x \gt 0\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

(2) \(y = 4\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

Answer: D

Bruno,

Thanks for the great response. I understand this is a 700 level problem, but is there a quicker way to "rephrase" the question. As I was making the formula translations, and then calculating the values of x, y, and z for each set, I had already spent more than 2 minutes.

We have system of equations with three distinct equations and three unknowns, so we can solve it. As \(x\) is squared we'll get two values for it and also two values for \(y\) and \(z\): two triplets. Hence we'll get two values for \(x^3 + y^2 + z\), one divisible by 7 and another not divisible by 7. Each statement is giving us the info to decide which triplet is right, thus both statement are sufficient on its own.

Given:

\(x^2 = y + 5\);

\(z = 2x\);

\(y = z - 2\), or which is the same \(y=(2x)-2\)

Solve for \(x\): \(x^2=(2x-2) + 5\). Rearrange:

\(x^2-2x-3=0\). Either \(x=3\) or \(x=-1\)

So, the first triplet would be: \(x=3\), \(y=4\), \(z=6\). Which gives: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7;

The second triplet would be: \(x=-1\), \(y=-4\), \(z=-2\). Which gives: \(x^3 + y^2 + z=-1+16-2=13\), not divisible by 7.

(1) \(x \gt 0\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

(2) \(y = 4\). We deal with the first triplet: \(x^3 + y^2 + z=27+16+6=49\), divisible by 7. Sufficient.

It was an interesting solution how you have inferred even before putting pen to paper " on of the values of the expression will be divisible by 7 & other will be not" . If this was known before setting out to solve the question then I think in this DS question knowing that any pointers to establish / confirm the nature of the triplets will be sufficient.

My point here is how do we know that both the values will not be divisible by 7. Had the question asked divisible by 5 or 19 for that matter. Does the inference remains same that one value of the expression will remain divisible & other will not in each of the case?

Would love to get the answr to this qs (not the actual gmat q)