Last visit was: 26 Apr 2024, 08:35 It is currently 26 Apr 2024, 08:35

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
avatar
Intern
Intern
Joined: 30 Aug 2013
Posts: 2
Own Kudos [?]: [0]
Given Kudos: 1
GMAT 1: 650 Q47 V31
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [1]
Given Kudos: 81609
Send PM
Manager
Manager
Joined: 16 Jan 2013
Posts: 66
Own Kudos [?]: 21 [0]
Given Kudos: 1323
Location: Bangladesh
GMAT 1: 490 Q41 V18
GMAT 2: 610 Q45 V28
GPA: 2.75
Send PM
SVP
SVP
Joined: 20 Mar 2014
Posts: 2362
Own Kudos [?]: 3626 [2]
Given Kudos: 816
Concentration: Finance, Strategy
GMAT 1: 750 Q49 V44
GPA: 3.7
WE:Engineering (Aerospace and Defense)
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
1
Kudos
1
Bookmarks
ranaazad wrote:
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.




Hello sir,
It was not mentioned in the question stem whether x, y and z are integers. In this question, if x, y and z were non-integers, wouldn't the procedure be different? Would you please explain?

Thanks! :D


This question has a trick in that it will be true for both integers and non-integers alike:

1. x^2 > 0 no matter x=integer or not. Similarly, \(\sqrt[4]{x^2}\) will be positive for x=integer or non-integer. Try it out. Let x = 1 , \(\sqrt[4]{1^2} = 1 > 0\) and if x= 0.5, \(\sqrt[4]{0.5^2} = 0.707 >0.\)

Thus it does not matter whether you take x = integer or a fraction.

Coming back to the question,

Per statement 1, as mentioned above, \(\sqrt[4]{1^2} = 1 > 0\) ---> \(\sqrt[5]{y} > 0\) -----> y >0. Thus the statement \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\) will be false. Thus this statement is sufficient.

Per statement 2, z^4 > 0 whether z =1 or z= 0.5 ----> 1/(z^4) >0 ----> y^3 >0---> y>0 (satisfies for both, y =1 or y = 0.25). Thus the given statement \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\) will be false. Thus this statement is sufficient.

As both the given statements are sufficient, the correct answer is D.

whenever you are in doubt, always test the given statements/conditions with different values (integers, fractions , etc). This way you will get a better picture.
Retired Moderator
Joined: 05 Jul 2006
Posts: 849
Own Kudos [?]: 1562 [0]
Given Kudos: 49
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.



if y = 0 then statement 1 become 2^x = 2^2x , i.e. x = 2x , i.e. x = 0 not 2 , what am i doing wrong here if you plz??
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [1]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
1
Kudos
Expert Reply
yezz wrote:
Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.



if y = 0 then statement 1 become 2^x = 2^2x , i.e. x = 2x , i.e. x = 0 not 2 , what am i doing wrong here if you plz??


If y=0, then we'll have \(2^{x}=\sqrt[x]{16}\):

\(2^x=2^{\frac{4}{x}}\);

\(x=\frac{4}{x}\);

\(x^2=4\)

\(x=2\) or \(x=-2\) (discard since x is non-negative).
avatar
Intern
Intern
Joined: 31 Oct 2017
Posts: 4
Own Kudos [?]: 2 [0]
Given Kudos: 5
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.


I could not understand the highlighted part. I also don't understand when to consider both positive and negative solutions and when to consider only positive solution when dealing with roots. Please explain.
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [1]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
1
Kudos
Expert Reply
scrumptious829 wrote:
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.


I could not understand the highlighted part. I also don't understand when to consider both positive and negative solutions and when to consider only positive solution when dealing with roots. Please explain.


When the GMAT provides the square root sign for an even root, such as a square root, fourth root, etc. then the only accepted answer is the positive root. That is:

\(\sqrt{9} = 3\), NOT +3 or -3;
\(\sqrt[4]{16} = 2\), NOT +2 or -2;

Notice that in contrast, the equation \(x^2 = 9\) has TWO solutions, +3 and -3. Because \(x^2 = 9\) means that \(x =-\sqrt{9}=-3\) or \(x=\sqrt{9}=3\).
Manager
Manager
Joined: 02 Jun 2015
Posts: 146
Own Kudos [?]: 642 [0]
Given Kudos: 1196
Location: Ghana
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.



Hi Bunuel,

Can you kindly help me understand why 4th root of x^2 > 0 and not 4th root of x^2 = 4th root of |x| similar to square of x^2 = square root of |x| as shown in the step 2 of your solution to the question @ https://gmatclub.com/forum/what-is-x-2- ... 99157.html?

Thank you
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [1]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
1
Kudos
Expert Reply
duahsolo wrote:
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.



Hi Bunuel,

Can you kindly help me understand why 4th root of x^2 > 0 and not 4th root of x^2 = 4th root of |x| similar to square of x^2 = square root of |x| as shown in the step 2 of your solution to the question @ https://gmatclub.com/forum/what-is-x-2- ... 99157.html?

Thank you


Even roots from a non-negative number is non-negative, so 0 or positive: \(\sqrt[even]{something}\geq 0\), not matter what that "something" is (provided it's positive or 0 because even roots from negative numbers are not defined for the GMAT) )

Next, \(\sqrt[4]{x^2}=\sqrt{\sqrt{x^2}}=\sqrt{|x|}\), which must be positive, so (1) basically says that \(\sqrt[5]{y}>0\), or that y > 0.

Finally, if it were
Intern
Intern
Joined: 25 Jan 2018
Posts: 6
Own Kudos [?]: 0 [0]
Given Kudos: 45
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Hi Bunuel

I don’t understand why in statement 2, x+y cannot equal 1. X and Y are non-negatives, so we shouldn’t exclude the possibility of X and Y being 0 and 1 or 1 and 0 respectively. Please clarify. Thanks

Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.


Posted from my mobile device
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [1]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
1
Kudos
Expert Reply
Rurugu wrote:
Hi Bunuel

I don’t understand why in statement 2, x+y cannot equal 1. X and Y are non-negatives, so we shouldn’t exclude the possibility of X and Y being 0 and 1 or 1 and 0 respectively. Please clarify. Thanks

Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.


Posted from my mobile device


If x = 0 and y = 1, then 2^x + 3^y = 4 and if x = 1 and y = 0, then 2^x + 3^y = 3. While \(\sqrt[1]{25}=25\)
Senior Manager
Senior Manager
Joined: 12 Mar 2023
Posts: 293
Own Kudos [?]: 94 [0]
Given Kudos: 16
Location: India
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.


how is it possible that even root has only positive value? Square root is even, but we are taking both positive and negative value. Then why not so for other even root?
please someone help me to understand it
Senior Manager
Senior Manager
Joined: 12 Mar 2023
Posts: 293
Own Kudos [?]: 94 [0]
Given Kudos: 16
Location: India
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
7. If \(x\) is a positive integer is \(\sqrt{x}\) an integer?
(1) \(\sqrt{7*x}\) is an integer
(2) \(\sqrt{9*x}\) is not an integer

Must know for the GMAT: if \(x\) is a positive integer then \(\sqrt{x}\) is either a positive integer itself or an irrational number. (It can not be some reduced fraction eg 7/3 or 1/2)

Also note that the question basically asks whether \(x\) is a perfect square.

(1) \(\sqrt{7*x}\) is an integer --> \(x\) can not be a perfect square because if it is, for example if \(x=n^2\) for some positive integer \(n\) then \(\sqrt{7x}=\sqrt{7n^2}=n\sqrt{7}\neq{integer}\). Sufficient.

(2) \(\sqrt{9*x}\) is not an integer --> \(\sqrt{9*x}=3*\sqrt{x}\neq{integer}\) --> \(\sqrt{x}\neq{integer}\). Sufficient.


Answer: D.


hi Bunuel, how D?

if x=7 then sqrt of 49 perfect square, but sqrt x is not. If we take 28, 63 etc for x then both sqrt of 7x and sqrt of x is an integer. So I is not sufficient...
I'm I right?
Senior Manager
Senior Manager
Joined: 12 Mar 2023
Posts: 293
Own Kudos [?]: 94 [0]
Given Kudos: 16
Location: India
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
7. If \(x\) is a positive integer is \(\sqrt{x}\) an integer?
(1) \(\sqrt{7*x}\) is an integer
(2) \(\sqrt{9*x}\) is not an integer

Must know for the GMAT: if \(x\) is a positive integer then \(\sqrt{x}\) is either a positive integer itself or an irrational number. (It can not be some reduced fraction eg 7/3 or 1/2)

Also note that the question basically asks whether \(x\) is a perfect square.

(1) \(\sqrt{7*x}\) is an integer --> \(x\) can not be a perfect square because if it is, for example if \(x=n^2\) for some positive integer \(n\) then \(\sqrt{7x}=\sqrt{7n^2}=n\sqrt{7}\neq{integer}\). Sufficient.

(2) \(\sqrt{9*x}\) is not an integer --> \(\sqrt{9*x}=3*\sqrt{x}\neq{integer}\) --> \(\sqrt{x}\neq{integer}\). Sufficient.

Answer: D.


how D? if we take x as 7 then sqrt(7X) is an integer, but sqrt(x) is not an integer. If we take x as 28,63 etc then both the square roots are integer. Hence B.

Bunuel, Iam i right?
Senior Manager
Senior Manager
Joined: 12 Mar 2023
Posts: 293
Own Kudos [?]: 94 [0]
Given Kudos: 16
Location: India
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);

is it correct to take both x-y and x+y as 2? Is there any such integer is existing?
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.


in statement 1 we get (x-y)(x+y)=4 but we can't take non integer value. So is it right to take both x-y and x+y as 2? is there any such number is existing where both sum and difference of two numbers as the same? Is it not valid to take statement 1 as insufficient?
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [0]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
pudu wrote:
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.


how is it possible that even root has only positive value? Square root is even, but we are taking both positive and negative value. Then why not so for other even root?
please someone help me to understand it


Mathematically, \(\sqrt{...}\) is the square root sign, a function (called the principal square root function), which cannot give negative result. So, this sign (\(\sqrt{...}\)) always means non-negative square root.


The graph of the function f(x) = √x

Notice that it's defined for non-negative numbers and is producing non-negative results.

TO SUMMARIZE:
When the GMAT (and generally in math) provides the square root sign for an even root, such as a square root, fourth root, etc. then the only accepted answer is the non-negative root. That is:

\(\sqrt{9} = 3\), NOT +3 or -3;
\(\sqrt[4]{16} = 2\), NOT +2 or -2;

Notice that in contrast, the equation \(x^2 = 9\) has TWO solutions, +3 and -3. Because \(x^2 = 9\) means that \(x =-\sqrt{9}=-3\) or \(x=\sqrt{9}=3\).

Hope it helps.
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [0]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
pudu wrote:
Bunuel wrote:
7. If \(x\) is a positive integer is \(\sqrt{x}\) an integer?
(1) \(\sqrt{7*x}\) is an integer
(2) \(\sqrt{9*x}\) is not an integer

Must know for the GMAT: if \(x\) is a positive integer then \(\sqrt{x}\) is either a positive integer itself or an irrational number. (It can not be some reduced fraction eg 7/3 or 1/2)

Also note that the question basically asks whether \(x\) is a perfect square.

(1) \(\sqrt{7*x}\) is an integer --> \(x\) can not be a perfect square because if it is, for example if \(x=n^2\) for some positive integer \(n\) then \(\sqrt{7x}=\sqrt{7n^2}=n\sqrt{7}\neq{integer}\). Sufficient.

(2) \(\sqrt{9*x}\) is not an integer --> \(\sqrt{9*x}=3*\sqrt{x}\neq{integer}\) --> \(\sqrt{x}\neq{integer}\). Sufficient.


Answer: D.


hi Bunuel, how D?

if x=7 then sqrt of 49 perfect square, but sqrt x is not. If we take 28, 63 etc for x then both sqrt of 7x and sqrt of x is an integer. So I is not sufficient...
I'm I right?


Since the OA is D, you are obviously not right. How is \(\sqrt{x}\) an integer, if x is 28 or 63?
Math Expert
Joined: 02 Sep 2009
Posts: 92945
Own Kudos [?]: 619184 [0]
Given Kudos: 81609
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
pudu wrote:
Bunuel wrote:
10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

(1) \(2^{x-y}=\sqrt[(x+y)]{16}\) --> \(2^{x-y}=16^{\frac{1}{x+y}}=2^{\frac{4}{x+y}}\) --> equate the powers: \(x-y=\frac{4}{x+y}\) --> \((x-y)(x+y)=4\).

Since both \(x\) and \(y\) are integers (and \(x+y>0\)) then \(x-y=2\) and \(x+y=2\) --> \(x=2\) and \(y=0\) --> \((x+y)^{xy}=2^0=1=odd\), so the answer to the question is No. Sufficient. (Note that \(x-y=1\) and \(x+y=4\) --> \(x=2.5\) and \(y=1.5\) is not a valid scenario (solution) as both unknowns must be integers)

(2) \(2^x+3^y=\sqrt[(x+y)]{25}\) --> obviously \(\sqrt[(x+y)]{25}\) must be an integer (since \(2^x+3^y=integer\)) and as \(x+y=integer\) then the only solution is \(\sqrt[(x+y)]{25}=\sqrt[2]{25}=5\) --> \(x+y=2\). So, \(2^x+3^y=5\) --> two scenarios are possible:
A. \(x=2\) and \(y=0\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^2+3^0=5\), and in this case: \((x+y)^{xy}=2^0=1=odd\);

is it correct to take both x-y and x+y as 2? Is there any such integer is existing?
B. \(x=1\) and \(y=1\) (notice that \(x+y=2\) holds true) --> \(2^x+3^y=2^1+3^1=5\), and in this case: \((x+y)^{xy}=2^1=2=even\).

Two different answers. Not sufficient.

Answer: A.


in statement 1 we get (x-y)(x+y)=4 but we can't take non integer value. So is it right to take both x-y and x+y as 2? is there any such number is existing where both sum and difference of two numbers as the same? Is it not valid to take statement 1 as insufficient?



4 can be expressed as the product of two integers in the following four ways only: 1 * 4, 2 * 2, (-1) * (-4), or (-2) * (-2).

Since both (x - y) and (x + y) are integers, and x + y > 0, we have x - y = 2 and x + y = 2 (the reason x - y = 1 and x + y = 4 is not possible is explained in the referenced solution).

Both x - y and x + y can equal 2 if x = 2 and y = 0, which is clearly stated in the solution you quoted.
GMAT Club Bot
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
   1   2 
Moderator:
Math Expert
92940 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne