Last visit was: 19 Nov 2025, 19:10 It is currently 19 Nov 2025, 19:10
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
joyseychow
Joined: 04 Dec 2008
Last visit: 08 Jul 2010
Posts: 55
Own Kudos:
1,329
 [53]
Given Kudos: 2
Posts: 55
Kudos: 1,329
 [53]
4
Kudos
Add Kudos
49
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
 [23]
9
Kudos
Add Kudos
14
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
 [10]
5
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
jeeteshsingh
Joined: 22 Dec 2009
Last visit: 03 Aug 2023
Posts: 177
Own Kudos:
Given Kudos: 48
Posts: 177
Kudos: 1,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).

How do you manage to do such things???? :shock: :roll: What is the best approach to master such things??? Please guide!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,376
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
jeeteshsingh
Bunuel

Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).

How do you manage to do such things???? :shock: :roll: What is the best approach to master such things??? Please guide!

What "things" exactly do you mean?

This question is about the remainders, so would suggest to review this concept in guids and/or to practice as much as possible these types of qestions (refer to the tags list by forum: REMAINDERS). Also you can check sriharimurthy's topic about the remainders at: compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html

Hope it helps.
User avatar
jeeteshsingh
Joined: 22 Dec 2009
Last visit: 03 Aug 2023
Posts: 177
Own Kudos:
Given Kudos: 48
Posts: 177
Kudos: 1,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel



Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).

Bunuel... am again lost here...

As said x = qy + 5...... and since \(q\geq0\)... this should be mean that X = Y + 5... then how come X can be less than Y.... we are adding 5 to Y to get X... :?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,376
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jeeteshsingh
Bunuel



Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).

Bunuel... am again lost here...

As said x = qy + 5...... and since \(q\geq0\)... this should be mean that X = Y + 5... then how come X can be less than Y.... we are adding 5 to Y to get X... :?

\(x=qy+5\), not \(y+5\), and note that \(q\) can be zero. In this case \(x=0*y+5=5\), this is smallest value of \(x\).

\(\frac{5}{y}\) gives remainder 5 means \(y>x\). For EVERY \(y\) more than \(x=5\), \(\frac{5}{y}\) will give remainder of \(5\): \(\frac{5}{6}\), \(\frac{5}{7}\), \(\frac{5}{16778}\), ... all these fractions have remainder of \(5\).

Hope it's clear.
User avatar
CoIIegeGrad09
Joined: 12 Oct 2009
Last visit: 20 Jun 2010
Posts: 8
Own Kudos:
Given Kudos: 1
Posts: 8
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jeeteshsingh
Bunuel



Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).

Bunuel... am again lost here...

As said x = qy + 5...... and since \(q\geq0\)... this should be mean that X = Y + 5... then how come X can be less than Y.... we are adding 5 to Y to get X... :?

\(x=qy+5\), not \(y+5\), and note that \(q\) can be zero. In this case \(x=0*y+5=5\), this is smallest value of \(x\).

Hey Bunuel....you lose me after the last part above... I still don't see how y=6. Could you explain step by step? or does anyone have a solution that doesn't involve algebra?


\(\frac{5}{y}\) gives remainder 5 means \(y>x\). For EVERY \(y\) more than \(x=5\), \(\frac{5}{y}\) will give remainder of \(5\): \(\frac{5}{6}\), \(\frac{5}{7}\), \(\frac{5}{16778}\), ... all these fractions have remainder of \(5\).

I thought \(\frac{5}{6}\), is equal to .8 with a remainder of 2?
User avatar
testprep2010
Joined: 10 Feb 2010
Last visit: 27 Feb 2013
Posts: 92
Own Kudos:
728
 [3]
Given Kudos: 6
Posts: 92
Kudos: 728
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
If x and y are positive integers and x/y has a remainder of 5, what is the smallest possible value of xy?

y>5 and smallest number greater than 5 is 6.

x=y(quotient)+reminder = 6(quotient)+5
to get smallest number, substitute 0
=>x=6(0)+5=5

and xy=5x6=30
User avatar
GmatSlayer112
Joined: 13 Nov 2011
Last visit: 27 Aug 2012
Posts: 18
Own Kudos:
39
 [1]
Given Kudos: 1
Location: United States
GMAT Date: 05-26-2012
GPA: 3.2
WE:Supply Chain Management (Healthcare/Pharmaceuticals)
Posts: 18
Kudos: 39
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can someone help me understand this?

The question is if x and y are positive integers and x/y has a remainder of 5, what is the smallest possible of xy?

The answer is 5*6 = 30

I came up with 66 because I understand that y has to be at least 6 and with that I would think that y has to be 11 which is how I derived 66. The answer says that the smallest y is 5 but I don't understand how that is possible.
User avatar
KapTeacherEli
User avatar
Kaplan GMAT Instructor
Joined: 25 Aug 2009
Last visit: 03 Oct 2013
Posts: 610
Own Kudos:
682
 [1]
Given Kudos: 2
Location: Cambridge, MA
Expert
Expert reply
Posts: 610
Kudos: 682
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GmatSlayer112
Can someone help me understand this?

The question is if x and y are positive integers and x/y has a remainder of 5, what is the smallest possible of xy?

The answer is 5*6 = 30

I came up with 66 because I understand that y has to be at least 6 and with that I would think that y has to be 11 which is how I derived 66. The answer says that the smallest y is 5 but I don't understand how that is possible.
if y is 5, then 5/6 = 0 r 5 -- that is, there are NO complete sixes in the number five, so all five are left over in the remainder!
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
2,326
 [1]
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,326
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
GmatSlayer112
Can someone help me understand this?

The question is if x and y are positive integers and x/y has a remainder of 5, what is the smallest possible of xy?

The answer is 5*6 = 30

I came up with 66 because I understand that y has to be at least 6 and with that I would think that y has to be 11 which is how I derived 66. The answer says that the smallest y is 5 but I don't understand how that is possible.

When dividing a positive integer \(x\) by another positive integer \(y\), we get a unique non-negative integer quotient \(q\) and a unique remainder \(r\), where \(r\) is an integer such that \(0\leq{r}<y\). When \(r = 0\), we say that \(x\) is divisible by \(y\), that \(y\) is a factor of \(x\), or that \(x\) is a multiple of \(y\). In this case, \(x\) can be evenly divided by \(y\).

In our case, we can write \(x = q*y + 5\), and as the remainder is always smaller than the divisor, we can deduce that \(y\) should be at least 6. The minimum quotient \(q\) is 0 which gives \(x = 5\). Therefore, the smallest possible value of \(xy\) is \(5 * 6 =30\).
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GmatSlayer112
Can someone help me understand this?

The question is if x and y are positive integers and x/y has a remainder of 5, what is the smallest possible of xy?

The answer is 5*6 = 30

I came up with 66 because I understand that y has to be at least 6 and with that I would think that y has to be 11 which is how I derived 66. The answer says that the smallest y is 5 but I don't understand how that is possible.


Think: What is the quotient and what is the remainder when 3 is divided by 10?
The quotient is 0 (an integer) and the remainder is 3.

What is the quotient and what is the remainder when 5 is divided by 12?
The quotient is 0 (an integer) and the remainder is 5.

When a smaller number is divided by a larger number, the quotient is 0 and the remainder is the smaller number.

Divisibility is basically grouping. When you divide n by 10, you make as many groups of 10 as you can and the leftover is the remainder. When you have 3 and you want to divide it by 10, you make 0 groups of 10 each and you have 3 leftover which is the remainder.
avatar
harshavmrg
Joined: 25 Feb 2010
Last visit: 06 Dec 2012
Posts: 103
Own Kudos:
Given Kudos: 16
Status:I will not stop until i realise my goal which is my dream too
Schools: Johnson '15
Schools: Johnson '15
Posts: 103
Kudos: 286
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
joyseychow
If x and y are positive integers and x/y has a remainder of 5, what is the smallest possible value of xy?


[spoiler]This ques is from Man prep book. I don't understand why smallest value of x is 5 and not 11.[/spoiler]


Given \(x=qy+5\), where \(q\) is a quotient, an integer \(\geq0\). Which means that the least value of \(x\) is when \(q=0\), in that case \(x=5\). This basically means that numerator \(x\), is less than denominator \(y\).

Now the smallest denominator \(y\), which is more than numerator \(x=5\) is \(6\). so we have \(x=5\) and \(y=6\) --> \(xy=30\).


for this first time, i exactly though the same way as Bunuel...good teacher bunuel...thanks for this,,,,
User avatar
kiransaxena1988
Joined: 05 Jul 2013
Last visit: 07 Mar 2014
Posts: 7
Own Kudos:
WE:Information Technology (Computer Software)
Posts: 7
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Please help me understand one point, the question asks- min. possible value of xy and given x when divided by y gives remainder 5 so

x=my+5;
then suppose y=2 and m=1 and then x=1*2+5 =7;
xy=7*2=14 which is less than 30 then mentioned answer in the post, please help me explain where I am doing the mistake in calculating the min possible value for xy.

Thanks and Regards
Kiran Saxena
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kiransaxena1988
Please help me understand one point, the question asks- min. possible value of xy and given x when divided by y gives remainder 5 so

x=my+5;
then suppose y=2 and m=1 and then x=1*2+5 =7;
xy=7*2=14 which is less than 30 then mentioned answer in the post, please help me explain where I am doing the mistake in calculating the min possible value for xy.

Thanks and Regards
Kiran Saxena

The point is that if x=7 and y=2, then the remainder when x=7 is divided y=2 is 1 not 5, thus your example is not valid.

Hope it's clear.
avatar
testprepabc
Joined: 02 Sep 2016
Last visit: 08 Oct 2016
Posts: 20
Own Kudos:
Given Kudos: 1
Posts: 20
Kudos: 22
Kudos
Add Kudos
Bookmarks
Bookmark this Post
joyseychow
If x and y are positive integers and x/y has a remainder of 5, what is the smallest possible value of xy?


This ques is from Man prep book. I don't understand why smallest value of x is 5 and not 11.
This is a classic trap: 0 is a multiple of every natural number. 5 can be written as (0*6)+5 which also means that when 5 is divided by 6, remainder is 5.
In order to find the minimum possible value of xy, we will try to make both x and y the smallest. To leave a remainder of 5, minimum possible value of y will be 6. Smallest possible number that will result in the remainder of 5 is then 5 (as explained above). So, xy=5*6=30

Hope it helps :)
User avatar
MvArrow
Joined: 06 Sep 2016
Last visit: 26 Jan 2019
Posts: 105
Own Kudos:
58
 [1]
Given Kudos: 100
Location: Italy
Schools: EDHEC (A$)
GMAT 1: 650 Q43 V37
GPA: 3.2
WE:General Management (Human Resources)
Schools: EDHEC (A$)
GMAT 1: 650 Q43 V37
Posts: 105
Kudos: 58
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can someone help me?
My reasoning was that:
1/5 = 0 (5)
so x=1 and y=5 and so the minimum value of xy=5!

Why I am wrong? Bunuel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,376
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,376
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
MvArrow
Can someone help me?
My reasoning was that:
1/5 = 0 (5)
so x=1 and y=5 and so the minimum value of xy=5!

Why I am wrong? Bunuel

1 divided by 5 gives the remainder of 1, not 5.
User avatar
MvArrow
Joined: 06 Sep 2016
Last visit: 26 Jan 2019
Posts: 105
Own Kudos:
Given Kudos: 100
Location: Italy
Schools: EDHEC (A$)
GMAT 1: 650 Q43 V37
GPA: 3.2
WE:General Management (Human Resources)
Schools: EDHEC (A$)
GMAT 1: 650 Q43 V37
Posts: 105
Kudos: 58
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
MvArrow
Can someone help me?
My reasoning was that:
1/5 = 0 (5)
so x=1 and y=5 and so the minimum value of xy=5!

Why I am wrong? Bunuel

1 divided by 5 gives the remainder of 1, not 5.

True! Today I have my mind in the clouds :dazed
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts