Last visit was: 11 Dec 2024, 04:53 It is currently 11 Dec 2024, 04:53
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
rxs0005
Joined: 07 Jun 2004
Last visit: 21 Jun 2017
Posts: 437
Own Kudos:
Given Kudos: 22
Location: PA
Posts: 437
Kudos: 2,996
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
AmrithS
Joined: 04 Jan 2011
Last visit: 12 Jun 2021
Posts: 756
Own Kudos:
Given Kudos: 78
Status:-=Given to Fly=-
Location: India
Concentration: Leadership, Strategy
GMAT 1: 650 Q44 V37
GMAT 2: 710 Q48 V40
GMAT 3: 750 Q51 V40
GPA: 3.5
WE:Education (Education)
GMAT 3: 750 Q51 V40
Posts: 756
Kudos: 440
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 11 Dec 2024
Posts: 15,538
Own Kudos:
70,195
 [3]
Given Kudos: 449
Location: Pune, India
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,538
Kudos: 70,195
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
rxs0005
Joined: 07 Jun 2004
Last visit: 21 Jun 2017
Posts: 437
Own Kudos:
Given Kudos: 22
Location: PA
Posts: 437
Kudos: 2,996
Kudos
Add Kudos
Bookmarks
Bookmark this Post
thanks for the input
User avatar
gmat1220
Joined: 03 Feb 2011
Last visit: 17 Feb 2020
Posts: 467
Own Kudos:
Given Kudos: 123
Status:Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: University of Chicago Booth School of Business
Products:
Posts: 467
Kudos: 924
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
Also remember, if a and b are 2 numbers whose HCF and LCM is given,
a*b = HCF*LCM
(Try to figure out why this must be true.)

karishma
I never appreciated the formulas for LCM and HCF of the fractions. I just don't seem to get these formulas, can you throw some light, how?

LCM of a fraction is - LCM of numerator/HCF of denominator. 21/2 is the LCM of 3/4 and 7/6

HCF of a fraction is - HCF of numerator/LCM of denominator. 1/12 is the HCF of 3/4 and 7/6

This looked daunting even during my school days until I started using LCM to compare fractions wherein it did make sense. But not the LCM of the fractions. :)
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 11 Dec 2024
Posts: 15,538
Own Kudos:
70,195
 [1]
Given Kudos: 449
Location: Pune, India
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,538
Kudos: 70,195
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
gmat1220
VeritasPrepKarishma
Also remember, if a and b are 2 numbers whose HCF and LCM is given,
a*b = HCF*LCM
(Try to figure out why this must be true.)

karishma
I never appreciated the formulas for LCM and HCF of the fractions. I just don't seem to get these formulas, can you throw some light, how?

LCM of a fraction is - LCM of numerator/HCF of denominator. 21/2 is the LCM of 3/4 and 7/6

HCF of a fraction is - HCF of numerator/LCM of denominator. 1/12 is the HCF of 3/4 and 7/6

This looked daunting even during my school days until I started using LCM to compare fractions wherein it did make sense. But not the LCM of the fractions. :)

LCM/HCF is an important concept as basis for other concepts but LCM/HCF of fractions isn't that important. Over the years, I remember using this concept very rarely. Nevertheless, of course no harm in having a clear understanding.

Algebraic approach

Consider 2 fractions a/b and c/d in their lowest form, their LCM (L1/L2) and HCF (H1/H2) (also in their lowest forms)
LCM should be divisible by both numbers so
L1/L2 is divisible by a/b. This implies L1*b/L2*a is an integer. Since a/b and L1/L2 are in their lowest form, L1 must be divisible by a and b must be divisible by L2.
Similarly, L1 must be divisible by c and d must be divisible by L2.
L1, the numerator of LCM, must be divisible by both a and c and hence should be the LCM of a and c, the numerators. (L1 cannot be just any multiple of a and c; it must be the lowest common multiple so that L1/L2 is the Lowest Multiple of the two fractions)
b and d both must be divisible by L2 and hence L2 must be their HCF. (Not just any common factor but the highest common factor so that L1/L2 is the lowest multiple possible)

Using similar reasoning, you can figure out why we find HCF of fractions the way we do.

Now let me give you some feelers. They are more important than the algebraic explanation above. They build intuition.

Let me remind you first that LCM is the lowest common multiple. It is that smallest number which is divisible by both the given numbers.
Say, I have two fractions: 1/4 and 1/2. What is their LCM? It's 1/2 because 1/2 is the smallest fraction which is divisible by both 1/2 and 1/4. (If this is tricky to see, think about their equivalents in decimal form 1/2 = 0.50 and 1/4 = 0.25. You can see that 0.50 is the smallest common multiple they have)

But 1/2 = 2/4. LCM of 2/4 and 1/4 will obviously be 2/4....

What is HCF? It is that greatest number which is common between the two fractions. Again, let's take 1/2 and 1/4. What is greatest common fraction between them? 1/4 (Note that 1/2 and 1/4 are both divisible by other fractions too e.g. 1/8, 1/24 etc but 1/4 is the greatest such common fraction)

On the same lines, what will be the LCM of 2/3 and 1/8. We know that 2/3 = 16/24 and 1/8 = 3/24. what do you think their LCM will be?
16*3/24 = 48/24 = 2

Also, think what will be the HCF of 2/3 and 1/8. We know that 2/3 = 16/24 and 1/8 = 3/24. What is common between the two fractions? 1/24

LCM is a fraction greater than (or equal to) both the fractions. When you take the LCM of the numerator and HCF of the denominator, you are making a fraction greater than (or equal to) either one of the numbers.

HCF is a fraction smaller than (or equal to) both the fractions. When you take the HCF of the numerator and LCM of the denominator, you are making a fraction smaller than (or equal to) either one of the numbers.
User avatar
gmat1220
Joined: 03 Feb 2011
Last visit: 17 Feb 2020
Posts: 467
Own Kudos:
924
 [1]
Given Kudos: 123
Status:Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: University of Chicago Booth School of Business
Products:
Posts: 467
Kudos: 924
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Karishma
True. Thanks!!! I also get the following two inferences. Pls verify:

1. Lcm is the multiple of hcf.
2. Never trust lcm of two numbers alone for deriving the number properties of two numbers. I mean lcm will include primes from both numbers. Hence the prime can belong to either one. You cant say which one.

Posted from my mobile device
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 11 Dec 2024
Posts: 15,538
Own Kudos:
70,195
 [1]
Given Kudos: 449
Location: Pune, India
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,538
Kudos: 70,195
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmat1220
Karishma
True. Thanks!!! I also get the following two inferences. Pls verify:

1. Lcm is the multiple of hcf.
2. Never trust lcm of two numbers alone for deriving the number properties of two numbers. I mean lcm will include primes from both numbers. Hence the prime can belong to either one. You cant say which one.

Posted from my mobile device

Yes, you are right.
avatar
miweekend
Joined: 29 Jun 2011
Last visit: 27 Feb 2012
Posts: 12
Own Kudos:
 Q33  V19
Posts: 12
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
rxs0005
hi all

How can we find the different numbers associated with an GCD , HCF

for eg :

if we have the GCD is 30 of 2 numbers how can we back trace the possible numbers like

6 , 5 : 10 , 3 etc


and if we have HCF as 5 is there a way we can find potential number that have HCF 5

GCD/HCF (As pointed out above, they are the same) is the highest common factor so if HCF = 30, both numbers will definitely have 30 as a factor. The two numbers will be 30a and 30b where a and b will have no common factors (because if they did have a common factor, then HCF would have been 30*the common factor)
So numbers could be (30*4 and 30*5) but not (30*4 and 30*8).

LCM is the lowest common multiple i.e. it contains both the numbers. If LCM = 30 = 2*3*5, the numbers could be
1 and 30 (Start with 1 and the LCM)
2 and 15
2 and 30
6 and 5
etc

The point to remember is that both numbers must be made of only a single 2 and/or a single 3 and/or a single 5.
So the numbers could be (2*3 and 3*5) but not (2*2*3 and 3*7)

Also remember, if a and b are 2 numbers whose HCF and LCM is given,
a*b = HCF*LCM
(Try to figure out why this must be true.)

hi Karishma, I don't get why So numbers could be (30*4 and 30*5) but not (30*4 and 30*8)...aren't 4 nor 8 the prime factor so i supposed they should not shown up in the HCF ?
User avatar
varunmaheshwari
Joined: 25 Aug 2008
Last visit: 28 Jun 2012
Posts: 100
Own Kudos:
Given Kudos: 5
Location: India
WE 1: 3.75 IT
WE 2: 1.0 IT
Posts: 100
Kudos: 309
Kudos
Add Kudos
Bookmarks
Bookmark this Post
miweekend
hi Karishma, I don't get why So numbers could be (30*4 and 30*5) but not (30*4 and 30*8)...aren't 4 nor 8 the prime factor so i supposed they should not shown up in the HCF ?
If numbers are 30*4 and 30*8, then HCF should be 30*4 which is HCF = 120 and both numbers will definitely have 120 as a factor. The corresponding numbers will be 120a and 120b where a and b will have no common factors.

The same doesn't exist in 30*4 and 30*5 because both numbers definitely have 30 as a factor.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 11 Dec 2024
Posts: 15,538
Own Kudos:
Given Kudos: 449
Location: Pune, India
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,538
Kudos: 70,195
Kudos
Add Kudos
Bookmarks
Bookmark this Post
miweekend

hi Karishma, I don't get why So numbers could be (30*4 and 30*5) but not (30*4 and 30*8)...aren't 4 nor 8 the prime factor so i supposed they should not shown up in the HCF ?

I think Varun explained why numbers cannot be 30*4 and 30*8 quite well. Let me add a little bit of theory here:

What is GCD? It is the greatest common divisor (or highest common factor). This means that if GCD of two numbers, a and b, is 30, the greatest common divisor of a and b will be 30 i.e. once I divide a and b by 30, they will not have any other common factor left (except 1). Say, a = 120 and b = 150. Their GCD is 30.
a/30 = 4
b/30 = 5
4 and 5 have no common factor except 1.

If a = 120 and b = 240,
a/30 = 4
b/30 = 8
They do have a common factor 4. Hence 30 is not their GCD. Their GCD is 120.
a/120 = 1
b/120 = 2
Now we see that a and b have no common factor.
So basically, GCD is the greatest number that divides both numbers. Once you divide by GCD, you are left with co-primes i.e. numbers which have no common factor except 1.
User avatar
varunmaheshwari
Joined: 25 Aug 2008
Last visit: 28 Jun 2012
Posts: 100
Own Kudos:
Given Kudos: 5
Location: India
WE 1: 3.75 IT
WE 2: 1.0 IT
Posts: 100
Kudos: 309
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Karishma.. Thanks for such a clear explanation.. :)
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 35,782
Own Kudos:
Posts: 35,782
Kudos: 929
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
97800 posts