Last visit was: 19 Nov 2025, 04:57 It is currently 19 Nov 2025, 04:57
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
capri
Joined: 07 Jul 2005
Last visit: 23 Jul 2006
Posts: 30
Own Kudos:
Posts: 30
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
capri
Quote:
The range of S U T is different from the range of S.

If range of union is different then standard deviation will also defer.

My answer is A


It certainly differs, but read the question carefully
User avatar
old_dream_1976
Joined: 09 Aug 2005
Last visit: 30 Nov 2006
Posts: 133
Own Kudos:
Posts: 133
Kudos: 17
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
S and T are sets of numbers. The standard deviation of the elements of set S is q. Is the standard deviation of S U T greater than q?

(1) The range of S U T is different from the range of S.
(2) There is only one element in T, and it is twice the arithmetic mean of the elements in S.


1. range differs means it can only increase therefore SD increases

suff

2. one element is 2times more than mean - therefore sd increases ---SD will not increase if the lone element in T is equal to the mean


So D
User avatar
Futuristic
Joined: 28 Dec 2005
Last visit: 07 May 2009
Posts: 415
Own Kudos:
Posts: 415
Kudos: 52
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
S and T are sets of numbers. The standard deviation of the elements of set S is q. Is the standard deviation of S U T greater than q?

(1) The range of S U T is different from the range of S.
(2) There is only one element in T, and it is twice the arithmetic mean of the elements in S.



going with C.

Just starting out with math, so am just trying to nail down the concepts.

1: The range can only change in a set if the difference between the greatest elements in the set changes. Since the new set SUT contains all the elements of the old set S, the range of the new set, if different, must be greater, since it cannot be smaller. However we are concerned not with range but with SD. There may be 5 elements in S and 1000 elements in T. One element in T is greater than the largest elememt in S or lesser than the smallest in S, increasing the range. This one element will certainly cause the SD to increase. The other 999 elements may actually be the same value as the arithmetic mean, thereby reducing the SD.

We cannot say from 1, if the SD will increase or decrease, though we can say that the range will increase.


2: There is a single element in T which is twice the average. Consider a set as follows:-

{ 0, 10000}

Now add another element which is twice the mean, i.e. 10000
Since the question does not say the sets are disjoint, this is possible.
Set SUT = S = { 0, 10000 }, and the SD does not change.

Consider another set S {0,10,20} mean = 10, SD = 5.something.
Add an element twice the mean i.e. 20. SD increases.
Therefore 2 is incufficient.

Consider 1 and 2 together. If there is one element added, and this causes the range to increase, it cannot be an element already in S. Then, SD will increase.

Will go with C
User avatar
ps_dahiya
Joined: 20 Nov 2005
Last visit: 15 Oct 2019
Posts: 1,486
Own Kudos:
Concentration: Strategy, Entrepreneurship
Schools:Completed at SAID BUSINESS SCHOOL, OXFORD - Class of 2008
Posts: 1,486
Kudos: 1,215
Kudos
Add Kudos
Bookmarks
Bookmark this Post
C

St1: If range increases then SD may increase or decrease depending on how the mean is affected. Data points may lie farther than mean or closer to mean. INSUFF

St2: That one point may increase or decrease the range and can also increase or decrease the mean.: INSUFF
Case1: S = {-1,0,0,0,1} Mean = 0 So T = {0}
Variance of S = 2/4
Variance of T = 0
Variance of (S and T) = 2/5

Case2: S = {2,2,2,2} means = 2 so T = {4}
Variance of S = 0
Variance of T = 0
Variance of (S and T) is greater than 0 because mean is 12/5 and more points are far scattered to mean.

Combined:

It means one point of T will increase the rangle of (S and T) and will increase the SD.
Case1 of statement is out and case 2 is in. that means SD will increase.

NOTE: Variance = SD^2
User avatar
MA
Joined: 25 Nov 2004
Last visit: 09 Aug 2011
Posts: 697
Own Kudos:
Posts: 697
Kudos: 515
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
S and T are sets of numbers. The standard deviation of the elements of set S is q. Is the standard deviation of S U T greater than q?

(1) The range of S U T is different from the range of S.
(2) There is only one element in T, and it is twice the arithmetic mean of the elements in S.


its B for me.

1. difference in range could increase or decrease the SD. nsf.
2. if T has only one element, then S U T has either 1 or 0 element (since we know from the question that set S has more than 1 element). in both cases the SD is 0. so suff.
User avatar
sharadGmat
Joined: 20 Feb 2006
Last visit: 01 Mar 2012
Posts: 177
Own Kudos:
Posts: 177
Kudos: 969
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kevincan
S and T are sets of numbers. The standard deviation of the elements of set S is q. Is the standard deviation of S U T greater than q?

(1) The range of S U T is different from the range of S.
(2) There is only one element in T, and it is twice the arithmetic mean of the elements in S.




Will go with B.. B tells that we adding another element that's twice the mean.
This means we are adding square of mean to variance.. This means standard deviation will increase..

Just B..
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Why are (1) and (2) sufficient together?
avatar
HongHu
Joined: 03 Jan 2005
Last visit: 25 Apr 2011
Posts: 966
Own Kudos:
Posts: 966
Kudos: 796
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If the range of SUT is same with S then it means we are adding one point (T) within the range of S. The points are less scattered. In other words SD would become smaller.

If the range of SUT is different from S then it means we are adding one point (T) outside the range of S. The points are more scattered. In other words SD would be greater.
User avatar
game over
Joined: 04 Jul 2006
Last visit: 31 Oct 2006
Posts: 38
Own Kudos:
Posts: 38
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
E.

A is not sufficient.
I only present an example, in which q decreases: T=(1, 1, 1, 1, 1, 1, 1,1 ....,1) 1*10^12 times; S=(4, 8, 12). Then the standard deviation surely decreases.

B. is not sufficient too.
For example:
S=(0,0,0) T=0. Then q does not increase.
(examples, where q increases are easy to find)

Both statements together are not sufficient.

[Note: It is sufficient to find an example and a counterexample; this sketch is not necessary)

To provide a general insight is somewhat complicated (I can't use symbols here).

Sketch:
We are able to compute the new average (na).
Consider the formula of the new standard deviation:
1/(n+1)*sum(x(i) - x(bar))^2 = 1/(n+1)*sum((x(j)-x(bar))^2)+1/(n+1)*x(bar)^2 = ...
We can compare this term with the old term.
The new standard deviation could be smaller or bigger than the old st. d (just plug-in some numbers).

OE (Short-Cut)?
User avatar
kevincan
User avatar
GMAT Instructor
Joined: 04 Jul 2006
Last visit: 18 Apr 2022
Posts: 958
Own Kudos:
Given Kudos: 6
Location: Madrid
Posts: 958
Kudos: 729
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Yours will do, though with a simpler counterexample:

Any set made up of many slightly postive numbers and one large negative number, a set that has a mean that is slightly positive, too.

Ex The 9-element set (-3,1.5,1.5,1.5,...,1.5) mean 1
variance (4^2+ 8(0.5)^2)/9= 2

If we include the element 2 (twice the mean of S), new mean is 1.1

variance= ((4.1)^2+8(0.4)^2+ (0.9)^2)/10 which is less than (17+1.3+1)/10, which is less than 2.

Admittedly, this is not a fair question, but a lot of people fell for A, which is disconcerting! OA=E



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Data Sufficiency (DS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
105383 posts
GMAT Tutor
1924 posts