GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 20 Jan 2019, 11:20

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### FREE Quant Workshop by e-GMAT!

January 20, 2019

January 20, 2019

07:00 AM PST

07:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.
• ### GMAT Club Tests are Free & Open for Martin Luther King Jr.'s Birthday!

January 21, 2019

January 21, 2019

10:00 PM PST

11:00 PM PST

Mark your calendars - All GMAT Club Tests are free and open January 21st for celebrate Martin Luther King Jr.'s Birthday.

# S95-06

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 52296

### Show Tags

16 Sep 2014, 00:49
00:00

Difficulty:

55% (hard)

Question Stats:

51% (01:08) correct 49% (01:26) wrong based on 53 sessions

### HideShow timer Statistics

If the average (arithmetic mean) of six different numbers is 25, how many of the numbers are greater than 25?

(1) None of the six numbers is greater than 50.

(2) Three of the six numbers are 7, 8, and 9, respectively.

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 52296

### Show Tags

16 Sep 2014, 00:49
1
Official Solution:

We must determine how many numbers in a set of six distinct numbers are greater than 25. Since the average of the six numbers is 25, these six numbers must sum to $$6 \times 25 = 150$$.

Statement 1 tells us that none of the six numbers is greater than 50. Many combinations of numbers satisfy this statement. For example, the six numbers could be 19, 20, 21, 22, 23, and 45. In this case, only 1 number is greater than 25. On the other hand, if the six numbers are 1, 2, 3, 47, 48, and 49, then 3 of the numbers are greater than 25. Since we cannot find a unique value, statement 1 alone is NOT sufficient to answer the question. Eliminate answer choices A and D. The correct answer choice is B, C, or E.

Statement 2 tells us that three of the six numbers are 7, 8, and 9. This means that the other three numbers must sum to $$150 - (7 + 8 + 9) = 150 - 24 = 126$$. However, since there is no limit to what any of the numbers can be, we can have different combinations. For example, the three numbers could be 1, 2, and 123. In this case, only 1 number is greater than 25. But if the three numbers are 41, 42, and 43, then all 3 are greater than 25. Statement 2 alone is also NOT sufficient. Eliminate answer choice B. The correct answer choice is either C or E.

Both statements together tell us that three of the numbers are 7, 8, and 9, that the other three numbers must sum to 126, and that none of the numbers is greater than 50. If all three remaining numbers are 25 or less (remember, the numbers must be different), then these remaining numbers can sum to, at maximum, $$25 + 24 + 23 = 72$$. If two numbers are 25 or less, and one is 50 (the upper bound for numbers), the sum is at most $$25 + 24 + 50 = 99$$. If one number is 25 or less, and the other two numbers are 50 and 49, then the maximum sum is $$25 + 50 + 49 = 124$$. In order to reach 126, all three numbers MUST be greater than 25. Both statements together are sufficient.

_________________
Manager
Joined: 01 Nov 2016
Posts: 66
Concentration: Technology, Operations

### Show Tags

13 Apr 2017, 18:56
Very hard question. I understand the official answer, but I don't know how it is possible to do this within two minutes unless you have incredible number sense
Math Expert
Joined: 02 Sep 2009
Posts: 52296

### Show Tags

13 Apr 2017, 23:36
joondez wrote:
Very hard question. I understand the official answer, but I don't know how it is possible to do this within two minutes unless you have incredible number sense

You can check other solutions here: https://gmatclub.com/forum/if-the-avera ... 88461.html
_________________
Re: S95-06 &nbs [#permalink] 13 Apr 2017, 23:36
Display posts from previous: Sort by

# S95-06

Moderators: chetan2u, Bunuel

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.