It is currently 20 Oct 2017, 09:35

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Set X has 5 integers: a, b, c, d, and e. If m is the mean

Author Message
TAGS:

### Hide Tags

Manager
Joined: 03 Oct 2009
Posts: 60

Kudos [?]: 148 [0], given: 8

Set X has 5 integers: a, b, c, d, and e. If m is the mean [#permalink]

### Show Tags

14 Jan 2012, 22:40
2
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

28% (00:27) correct 72% (01:18) wrong based on 47 sessions

### HideShow timer Statistics

Set X has 5 integers: a ,b ,c ,d , and e. If m is the mean and D, where D = sqrt{ [(a-m)^2+(b-m)^2+(c-m)^2+(d-m)^2+(e-m)^2]/5}, is the standard deviation of the set X, is D>2?

(1) a ,b ,c ,d , and e are different integers
(2) m is an integer not equal to any elements of the set
[Reveal] Spoiler: OA

Kudos [?]: 148 [0], given: 8

Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 4424

Kudos [?]: 8447 [2], given: 102

Re: Standard Deviation and Mean [#permalink]

### Show Tags

15 Jan 2012, 14:31
2
KUDOS
Expert's post
Hi, there! I'm happy to help with this!

First, I'll say this is a very difficult question. If a question of this difficulty appears on the GMAT, it will be one of the harder questions, a question for which you probably will spend a tad more than the allotted 2 min/ question (if you are efficient on the easy questions, you will have a little more time for the more difficult questions like this).

Question: Set X has 5 integers: a ,b ,c ,d , and e. If m is the mean and D, where D = sqrt{ [(a-m)^2+(b-m)^2+(c-m)^2+(d-m)^2+(e-m)^2]/5}, is the standard deviation of the set X, is D>2?

Notice, this is the ordinary definition of standard deviation. If standard deviation is not a familiar topic, I would suggest reviewing it a bit in whatever review material you have.

Notice, also, the real crux of the question is: can we make the standard deviation small enough? There's no problem making a standard deviation way more than 2 -- for example, if the set is {100, 200, 300, 400, 1000}, then it satisfies both statements and has D >2. It's always easy to pick big numbers and numbers widely spaced out to increase the standard deviation. The trick is: can we make the numbers close enough together so that it's still possible that D is less than or equal to 2?

Statement #1: a ,b ,c ,d , and e are different integers
This eliminates the most obvious choice for a small standard deviation, viz, make all five numbers equal. If all the numbers of a set are equal, the standard deviation is zero, but that's not a possibility here. Well, if they have to be all different, the closest they can still be is consecutive, for example: X = {1, 2, 3, 4, 5}. Then, m = 3, and D = sqrt(((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2)/5) = sqrt((4 + 1 + 0 + 1 + 4)/5) = sqrt(10/5) = sqrt(2), which is less than 2. So, given statement #1, it's possible make a choice that has a D less than 2, and it's always possible to make other choices and make D huge, so there's no way to decide whether or not D > 2. Statement #1, by itself, is insufficient.

Statement #2: m is an integer not equal to any elements of the set
This is a tricky statement. It tells us (a) that the mean is an integer, not something true for a general set of five integers, and (b) this integer, the mean, is *not* equal to any of the five elements of the set. So, we can't have all five integers the same (since the mean would also be the same as them), and we can't have five consecutive integers. If we want a small standard deviation, we need the numbers still close together, so make some of them the same, with a kind of "hole" in the middle for the mean. For example, the set {1, 1, 1, 3, 3} does not have a integer mean, but the set {1, 1, 1, 3, 4} does have an integer mean: m = 2. (We were leaving the entry 2 vacated on the list, hoping the mean would land there.) So, this latter set, X = {1, 1, 1, 3, 4} satisfies statement #2, and has a standard deviation of D = sqrt(((1-2)^2 + (1-2)^2 + (1-2)^2 + (3-2)^2 + (4-2)^2)/5) =sqrt((1 + 1 + 1 + 1 + 4)/5) =sqrt(8/5), which is less than 2. Again, given statement #2, it's possible make a choice that has a D less than 2, and it's always possible to make other choices and make D huge, so there's no way to decide whether or not D > 2. Statement #2, by itself, is insufficient.

Combined Statements #! & #2:
This combination is particularly tricky. Neither of the sets we concocted under the separate statements will work here. We need five different integer, and the mean is going to be an integer not equal to the members of the set. This means, if we want a small standard deviation, we need to construct a set of integers close to each other, but with a "hole" in the middle where the mean will fall. If I try {1, 2, 3, 5, 6}, that has a mean of 3.4, a sum of 17. To have a mean that's an integer, the sum must be a multiple of 5. We are shooing for a sum of 20, which would be a mean of 4, which is why we are intentionally excluding 4 from the list. We could just add 3 the highest number to get {1, 2, 3, 5, 9}, but having one particularly huge number increases the standard deviation more than having a few sorta big numbers. Outliers enormously inflate the standard deviation. Starting with {1, 2, 3, 5, 6}, I can't add anything to the lower numbers without either duplicating a number in the set, or getting 4, which I trying to exclude. I can add +1 to 5 and +2 to 6, to get {1, 2, 3, 6, 8}. I believe that is as close as you can make a set of five integers with the constraints that (a) all are different, (b) the mean is an integer, and (c) the integer-mean is not a member of the set. With this set, X = {1, 2, 3, 6, 8}, the mean is m = 4, and the standard deviation is D = sqrt(((1-4)^2 + (2-4)^2 + (3-4)^2 + (6-4)^2 + (8-4)^2)/5) =sqrt((9 + 4 + 1 + 4 + 16)/5 = sqrt(34/5) > sqrt(6) > 2. In other words, we have constructed the tightest, most compact group of five integers permitted under the combined conditions, and even with our best choice, we are unable to make the standard deviation less than 2. The two conditions, combined, absolutely require that the standard deviation is more than 2. The combined statements are sufficient.

Does that make sense? Please let me know if you have any questions on what I've said here.

Mike
_________________

Mike McGarry
Magoosh Test Prep

Kudos [?]: 8447 [2], given: 102

Manager
Joined: 03 Oct 2009
Posts: 60

Kudos [?]: 148 [0], given: 8

Re: Standard Deviation and Mean [#permalink]

### Show Tags

15 Jan 2012, 14:49
Thanks Mike...i found this quite tough, not sure whether i can solve it in test quickly enough

Kudos [?]: 148 [0], given: 8

Manager
Status: Retaking next month
Affiliations: None
Joined: 05 Mar 2011
Posts: 211

Kudos [?]: 177 [0], given: 42

Location: India
Concentration: Marketing, Entrepreneurship
GMAT 1: 570 Q42 V27
GPA: 3.01
WE: Sales (Manufacturing)
Set X has 5 integers: a, b, c, d, and e. If m is the mean [#permalink]

### Show Tags

22 Feb 2012, 22:22
Set $$X$$ has 5 integers: $$a$$ , $$b$$ , $$c$$ , $$d$$ , and $$e$$ . If $$m$$ is the mean and $$D$$ , where $$D = \sqrt{\frac{(a-m)^2+(b-m)^2+(c-m)^2+(d-m)^2+(e-m)^2}{5}}$$ , is the standard deviation of the set $$X$$ , is $$D \gt 2$$ ?

$$a$$ , $$b$$ , $$c$$ , $$d$$ , and $$e$$ are different integers
$$m$$ is an integer not equal to any elements of the set $$X$$

Strategy for reaching answer C. Can eliminate A B & D. Stuck between C & E. If testing numbers how to select appropriate numbers???????? how to be sure of the minimum range???

Kudos [?]: 177 [0], given: 42

Math Expert
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 128990 [1], given: 12185

### Show Tags

22 Feb 2012, 22:39
1
KUDOS
Expert's post
GMATPASSION wrote:
Set $$X$$ has 5 integers: $$a$$ , $$b$$ , $$c$$ , $$d$$ , and $$e$$ . If $$m$$ is the mean and $$D$$ , where $$D = \sqrt{\frac{(a-m)^2+(b-m)^2+(c-m)^2+(d-m)^2+(e-m)^2}{5}}$$ , is the standard deviation of the set $$X$$ , is $$D \gt 2$$ ?

$$a$$ , $$b$$ , $$c$$ , $$d$$ , and $$e$$ are different integers
$$m$$ is an integer not equal to any elements of the set $$X$$

Strategy for reaching answer C. Can eliminate A B & D. Stuck between C & E. If testing numbers how to select appropriate numbers???????? how to be sure of the minimum range???

Discussed here: set-x-has-5-integers-a-b-c-d-and-e-if-m-is-the-mean-126103.html

Let me note though that I wouldn't worry about this question at all, since you won't see anything like this on the real test.

Generally for the GMAT you only need to understand the concept of SD: you won't be asked to actually calculate the standard deviation of a set on the GMAT. So, what is the main thing you should know about it? Standard deviation shows how much variation there is from the mean, how widespread a given set is. So, a low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data are spread out over a large range of values.

Check this for more: math-standard-deviation-87905.html

Hope it helps.
_________________

Kudos [?]: 128990 [1], given: 12185

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16633

Kudos [?]: 273 [0], given: 0

Re: Set X has 5 integers: a, b, c, d, and e. If m is the mean [#permalink]

### Show Tags

30 Jan 2015, 17:41
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 9984

Kudos [?]: 3412 [0], given: 172

Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Re: Set X has 5 integers: a, b, c, d, and e. If m is the mean [#permalink]

### Show Tags

30 Jan 2015, 19:29
Hi All,

Standard Deviation is a relatively rare subject on Test Day (you'll likely see it just once). While you will be tested on the 'concept' of Standard Deviation (how "spread out" a group of numbers is, relative to the average of the group), the GMAT will NEVER ask you to calculate it. As such, the Standard Deviation question that you might see on Test Day will not look like this one.

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

# Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save \$75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Kudos [?]: 3412 [0], given: 172

Intern
Joined: 03 Jan 2015
Posts: 2

Kudos [?]: [0], given: 11

Schools: Neeley '18
Re: Set X has 5 integers: a, b, c, d, and e. If m is the mean [#permalink]

### Show Tags

31 Jan 2015, 20:54
Quote:
Hi, there! I'm happy to help with this!

First, I'll say this is a very difficult question. If a question of this difficulty appears on the GMAT, it will be one of the harder questions, a question for which you probably will spend a tad more than the allotted 2 min/ question (if you are efficient on the easy questions, you will have a little more time for the more difficult questions like this).

Question: Set X has 5 integers: a ,b ,c ,d , and e. If m is the mean and D, where D = sqrt{ [(a-m)^2+(b-m)^2+(c-m)^2+(d-m)^2+(e-m)^2]/5}, is the standard deviation of the set X, is D>2?

Notice, this is the ordinary definition of standard deviation. If standard deviation is not a familiar topic, I would suggest reviewing it a bit in whatever review material you have.

Notice, also, the real crux of the question is: can we make the standard deviation small enough? There's no problem making a standard deviation way more than 2 -- for example, if the set is {100, 200, 300, 400, 1000}, then it satisfies both statements and has D >2. It's always easy to pick big numbers and numbers widely spaced out to increase the standard deviation. The trick is: can we make the numbers close enough together so that it's still possible that D is less than or equal to 2?

Statement #1: a ,b ,c ,d , and e are different integers
This eliminates the most obvious choice for a small standard deviation, viz, make all five numbers equal. If all the numbers of a set are equal, the standard deviation is zero, but that's not a possibility here. Well, if they have to be all different, the closest they can still be is consecutive, for example: X = {1, 2, 3, 4, 5}. Then, m = 3, and D = sqrt(((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2)/5) = sqrt((4 + 1 + 0 + 1 + 4)/5) = sqrt(10/5) = sqrt(2), which is less than 2. So, given statement #1, it's possible make a choice that has a D less than 2, and it's always possible to make other choices and make D huge, so there's no way to decide whether or not D > 2. Statement #1, by itself, is insufficient.

Statement #2: m is an integer not equal to any elements of the set
This is a tricky statement. It tells us (a) that the mean is an integer, not something true for a general set of five integers, and (b) this integer, the mean, is *not* equal to any of the five elements of the set. So, we can't have all five integers the same (since the mean would also be the same as them), and we can't have five consecutive integers. If we want a small standard deviation, we need the numbers still close together, so make some of them the same, with a kind of "hole" in the middle for the mean. For example, the set {1, 1, 1, 3, 3} does not have a integer mean, but the set {1, 1, 1, 3, 4} does have an integer mean: m = 2. (We were leaving the entry 2 vacated on the list, hoping the mean would land there.) So, this latter set, X = {1, 1, 1, 3, 4} satisfies statement #2, and has a standard deviation of D = sqrt(((1-2)^2 + (1-2)^2 + (1-2)^2 + (3-2)^2 + (4-2)^2)/5) =sqrt((1 + 1 + 1 + 1 + 4)/5) =sqrt(8/5), which is less than 2. Again, given statement #2, it's possible make a choice that has a D less than 2, and it's always possible to make other choices and make D huge, so there's no way to decide whether or not D > 2. Statement #2, by itself, is insufficient.

Combined Statements #! & #2:
This combination is particularly tricky. Neither of the sets we concocted under the separate statements will work here. We need five different integer, and the mean is going to be an integer not equal to the members of the set. This means, if we want a small standard deviation, we need to construct a set of integers close to each other, but with a "hole" in the middle where the mean will fall. If I try {1, 2, 3, 5, 6}, that has a mean of 3.4, a sum of 17. To have a mean that's an integer, the sum must be a multiple of 5. We are shooing for a sum of 20, which would be a mean of 4, which is why we are intentionally excluding 4 from the list. We could just add 3 the highest number to get {1, 2, 3, 5, 9}, but having one particularly huge number increases the standard deviation more than having a few sorta big numbers. Outliers enormously inflate the standard deviation. Starting with {1, 2, 3, 5, 6}, I can't add anything to the lower numbers without either duplicating a number in the set, or getting 4, which I trying to exclude. I can add +1 to 5 and +2 to 6, to get {1, 2, 3, 6, 8}. I believe that is as close as you can make a set of five integers with the constraints that (a) all are different, (b) the mean is an integer, and (c) the integer-mean is not a member of the set. With this set, X = {1, 2, 3, 6, 8}, the mean is m = 4, and the standard deviation is D = sqrt(((1-4)^2 + (2-4)^2 + (3-4)^2 + (6-4)^2 + (8-4)^2)/5) =sqrt((9 + 4 + 1 + 4 + 16)/5 = sqrt(34/5) > sqrt(6) > 2. In other words, we have constructed the tightest, most compact group of five integers permitted under the combined conditions, and even with our best choice, we are unable to make the standard deviation less than 2. The two conditions, combined, absolutely require that the standard deviation is more than 2. The combined statements are sufficient.

Does that make sense? Please let me know if you have any questions on what I've said here.

I do agree that this is very hard question, and thank you very much for your answer:D
However, in my opinion, your method of choosing some sets of numbers to support your logic: this method should only be used carefully. For some questions, this method can lead to correct answer quickly. But for some questions, especially with gmat learner who do not have strong background in math, this method can be a nightmare for them: they choose the wrong excample numbers, and lead them to wrong answer.

To sum it up, I strongly appreciate your work, and I still hope we can try to find other ways to solve this question :D

Kudos [?]: [0], given: 11

Re: Set X has 5 integers: a, b, c, d, and e. If m is the mean   [#permalink] 31 Jan 2015, 20:54
Display posts from previous: Sort by