GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 26 Jan 2020, 14:27 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # The length, width, and height of a rectangular box, in centimeters, ar

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 60646
The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

12 00:00

Difficulty:   75% (hard)

Question Stats: 55% (02:15) correct 45% (01:57) wrong based on 472 sessions

### HideShow timer Statistics

The length, width, and height of a rectangular box, in centimeters, are L, W, and H. If the volume of this box is V cubic centimeters and the total area of the 6 sides of this box is A square centimeters, what is the value of V/A ?

(1) At least 2 of L, W, and H are equal to 5.
(2) L, W, and H all have the same value.

DS50351.01
OG2020 NEW QUESTION

_________________
examPAL Representative P
Joined: 07 Dec 2017
Posts: 1155
Re: The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

Using the Alternative approach, we'll try to find two different possible numeric results in order to eliminate the wrong answers.
Statement (1): if the dimensions are 5,5,5 then V=5³ and A=6x5x5. If the dimensions are 5,5,6 then V=5x5x6 and A=4x5x5+2x5x6. The former gives us 5/6 and the latter 150/160, which is not the same. Answer choices (A) and (D) are eliminated.
Statement (2): we already saw that if the dimensions are 5,5,5 then V=5³ and A=6x5x5. If the dimensions are 1,1,1 then V=1³ and A=6x1x1. While the former gives 5/6, the latter gives 1/6. Answer (B) is also eliminated.
Combining both statements gives only one option (dimensions 5,5,5), so there's only one possible value for V/A.

Posted from my mobile device
_________________
GMAT Club Legend  V
Joined: 18 Aug 2017
Posts: 5734
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
Re: The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

Bunuel wrote:
The length, width, and height of a rectangular box, in centimeters, are L, W, and H. If the volume of this box is V cubic centimeters and the total area of the 6 sides of this box is A square centimeters, what is the value of V/A ?

(1) At least 2 of L, W, and H are equal to 5.
(2) L, W, and H all have the same value.

DS50351.01
OG2020 NEW QUESTION

v= l*w*h
TSA= 2*(lw+wh+hl)
#1
At least 2 of L, W, and H are equal to 5.
v=25h
TSA= 2*(50+5h)
v/TSA = 25h/2*(50+5h)
h not given insufficeint
#2
L, W, and H all have the same value
v=1 or say 125 if 5
TSA= 6 at 1 and 30 when
ratio 1/6 or 125/30 ; 25/6
insufficient
combining 1 & 2
we take v=125 and tsa = 30 so ratio 25/6
IMO C
EMPOWERgmat Instructor V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15985
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

Hi All,

We're told that the length, width, and height of a rectangular box, in centimeters, are L, W, and H, respectively, the VOLUME of this box is V cubic centimeters and the TOTAL SURFACE AREA of the 6 sides of this box is A square centimeters. We're asked for the value of V/A. This question is based around some standard Geometry formulas for solids and can be solved by TESTing VALUES.

To start, Volume of a rectangular solid is V = (L)(W)(H) and Total Surface area is SA = 2(L)(W) + 2(L)(H) + 2(W)(H).

(1) At least 2 of L, W, and H are equal to 5.

Fact 1 tells us that 2 (or perhaps all 3) of the dimensions are equal to 5, but that still leads to a number of different answers to the question.
IF...
L = 5, W = 5, H = 5, then the Volume = (5)(5)(5) = 125 and Total Surface Area = (2)(5)(5) + (2)(5)(5) + (2)(5)(5) = 150... so the answer to the question is 125/150 = 5/6.
L = 5, W = 5, H = 1, then the Volume = (5)(5)(1) = 25 and Total Surface Area = (2)(5)(5) + (2)(5)(1) + (2)(5)(1) = 70... so the answer to the question is 25/70 = 5/14.
Fact 1 is INSUFFICIENT

(2) L, W, and H all have the SAME value.

Fact 2 tells us that we're actually dealing with a CUBE, but the answer to the question will still vary depending on the side length.
IF....
L = 5, W = 5, H = 5, then the Volume = (5)(5)(5) = 125 and Total Surface Area = (2)(5)(5) + (2)(5)(5) + (2)(5)(5) = 150... so the answer to the question is 125/150 = 5/6.
L = 1, W = 1, H = 1, then the Volume = (1)(1)(1) = 1 and Total Surface Area = (2)(1)(1) + (2)(1)(1) + (2)(1)(1) = 6... so the answer to the question is 1/6.
Fact 2 is INSUFFICIENT

Combined, we know...
At least 2 of L, W, and H are equal to 5.
L, W, and H all have the SAME value.

When combining the two Facts, it's clear that we're dealing with a cube with a side length of 5, so the answer to the question is 5/6.
Combined, SUFFICIENT

GMAT assassins aren't born, they're made,
Rich
_________________
e-GMAT Representative V
Joined: 04 Jan 2015
Posts: 3230
Re: The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

Solution

Steps 1 & 2: Understand Question and Draw Inferences
In this question, we are given
• The length, width, and height of a rectangular box, in centimetres, are L, W, and H.
• The volume of this box is V cubic centimetres and the total area of the 6 sides of this box is A square centimetres.

We need to determine
• The value of V/A.

As the given box is a rectangular one, we can say
• Volume V = LWH
• Total area of 6 sides = A = 2(LW + LH + WH)

With this understanding, let us now analyse the individual statements.

Step 3: Analyse Statement 1
As per the information given in statement 1, at least 2 of L, W, and H are equal to 5.
• However, we do not know the exact values of each of them.
Hence, statement 1 is not sufficient to answer the question.

Step 4: Analyse Statement 2
As per the information given in statement 2, L, W, and H all have the same value.
If we assume each of them is equal to ‘a’, then we can write
• V/A = a^3/(2(3a^2)) = a^3/(6a^2 ) = a/6
• Therefore, we need to know the value of ‘a’ to get the answer.

Hence, statement 2 is not sufficient to answer the question.

Step 5: Combine Both Statements Together (If Needed)
Combining information from both statements, we can say
• L = W = H = 5.
As we know the value of each of them, we can determine the value of V/A.
Hence, the correct answer is option C.

_________________
Manager  P
Joined: 14 Apr 2017
Posts: 70
Location: Hungary
GMAT 1: 760 Q50 V42 WE: Education (Education)
Re: The length, width, and height of a rectangular box, in centimeters, ar  [#permalink]

### Show Tags

2
Bunuel wrote:
The length, width, and height of a rectangular box, in centimeters, are L, W, and H. If the volume of this box is V cubic centimeters and the total area of the 6 sides of this box is A square centimeters, what is the value of V/A ?

(1) At least 2 of L, W, and H are equal to 5.
(2) L, W, and H all have the same value.

DS50351.01
OG2020 NEW QUESTION

The original question: $$V/A=?$$

1) We know that at least two dimensions of the rectangular box have length of 5. Let $$x$$ be its unknown dimension.

$$\frac{V}{A}=\frac{5\cdot 5\cdot x}{2\cdot 5\cdot 5+2\cdot 5\cdot x+2\cdot 5\cdot x}=\frac{25}{50/x+20}$$

Since $$x$$ can be any positive real number, we can't get a unique value to answer the original question. $$\implies$$ Insufficient

2) We know that all of its dimensions have the same value, so it is a cube. Let $$a$$ be the unknown side length of this cube.

$$\frac{V}{A}=\frac{a^3}{6a^2}=\frac{a}{6}$$

Since $$a$$ can be any positive real number, we can't get a unique value to answer the original question. $$\implies$$ Insufficient

1&2) We can infer that $$a=5$$, so $$V/A=5/6$$. Thus, the answer to the original question is a unique value. $$\implies$$ Sufficient

_________________
My book with my solutions to all 230 PS questions in OG2018:
Zoltan's solutions to OG2018 PS Re: The length, width, and height of a rectangular box, in centimeters, ar   [#permalink] 16 May 2019, 13:37
Display posts from previous: Sort by

# The length, width, and height of a rectangular box, in centimeters, ar  