Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Even after working extensively on absolute value questions, sometimes students come up with “why?” i.e. why do we have to take positive and negative values? Why do we have to consider ranges etc. They know the process but they do not understand the reason they need to follow the process. So here today, in this post, we will try to explain the reason.

You know how to solve an equation such as x + 2x = 4. Simple enough, right? Just add x with 2x to get 3x and separate out the x on one side. But what do you do when you have an equation with absolute values? How will you handle that equation? Say, you have |x| + 2x = 4. Is this your regular equation? No! You CANNOT say that x + 2x = 4 => 3x = 4 => x = 4/3. You have an absolute value and that complicates matters. You need to get rid of it to get a solution for x. How do you get rid of absolute values? The definition of absolute value helps us here:

|x| = x if x >= 0

|x| = -x if x < 0

So you can substitute x for |x| to make it a regular equation but only if x is non negative. If x is negative, then you put -x instead of |x| to convert it into a simple equation. And that is the reason you need to take positive and negative values of what is inside the absolute value sign.

Similarly,

|x-5| = (x-5) if (x-5) >= 0 i.e. if x >= 5

|x-5| = -(x-5) if (x-5) < 0 i.e. if x < 5

Let’s go back to the previous example and see how we can get rid of the absolute value to make it a regular equation:

Question 1: What is the value of x given |x| + 2x = 4?

We don’t know whether x is positive or negative so we will look at what happens in both cases:

Case 1: x is positive or 0

If x >= 0 then equation becomes x + 2x = 4 => x = 4/3

Our initial condition is that x is non negative. We get a positive solution on solving it and hence 4/3 is a valid solution.

Case 2: x is negative

If x < 0 then equation becomes -x + 2x = 4 => x = 4

Our initial condition is that x is negative. We get a positive solution on solving it and hence x = 4 is not a valid solution. Had we obtained a negative solution, it would have been valid.

So there is only one solution x = 4/3.

We hope the entire process makes more sense now. Let’s follow it up with a complex question from our algebra book.

Question 2: If x and y are integers and y = |x+3| + |4-x|, does y equal 7?

Statement 1: x < 4

Statement 2: x > -3

Solution: Now what do you do when you have y = |x+3| + |4-x|? How do you convert this into a regular equation? You don’t know whether whatever is in the absolute value sign is positive or negative. How will you get rid of the sign then? You will work on all the cases (messy algebra coming up!).

Now, we see the same logic in this question:

y = |x+3| + |4-x|

|x+3| = (x+3) if (x+3) >= 0. In other words, if x >= -3

|x+3| = -(x+3) if (x+3) < 0. In other words, if x < -3

|4-x| = (4-x) if (4-x) >= 0. In other words, if x <= 4

|4-x| = -(4-x) if (4-x) < 0. In other words, if x > 4

So our absolute values behave differently when x < -3, between -3 and 4 and when x > 4. We say that -3 and 4 are our transition points.

Case 1:

When x < -3, |x+3| = -(x+3) and |4-x| = (4-x).

So the equation becomes y = -(x+3) + (4-x)

y = 1 – 2x

For different values of x, y will take different values. Recall that x must be less than -3. Say x = -4, then y = 9. If x = -5, y = 11.

Case 2:

When -3 <= x <= 4, |x+3| = (x+3) and |4-x| = (4-x).

So the equation becomes y = (x+3) + (4-x)

y = 7

In this range, y will always be 7.

Case 3:

When x > 4, |x+3| = (x+3) and |4-x| = -(4-x)

So the equation becomes y = (x+3) – (4-x)

y = 2x – 1

For different values of x, y will take different values. Recall that x must be more than 4. Say x = 5, then y is 9. If x = 6, then y is 11.

Note that y equals 7 only when x is between -3 and 4. Both statements together tell us that x is between -3 and 4. No statement alone gives us this information. Hence, using both statements, we know that y must be 7.

Answer (C)

Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the GMAT for Veritas Prep and regularly participates in content development projects such as this blog!

ForumBlogs - GMAT Club’s latest feature blends timely Blog entries with forum discussions. Now GMAT Club Forums incorporate all relevant information from Student, Admissions blogs, Twitter, and other sources in one place. You no longer have to check and follow dozens of blogs, just subscribe to the relevant topics and forums on GMAT club or follow the posters and you will get email notifications when something new is posted. Add your blog to the list! and be featured to over 300,000 unique monthly visitors

Re: The Reason Behind Absolute Value Questions on the GMAT [#permalink]

Show Tags

01 Jun 2017, 06:28

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

MBA Acceptance Rate by Undergraduate Major Many applicants may wonder if their undergraduate major impacts their chance of getting into business school. Admissions data suggests that your college major...

MBA Waitlist Acceptance Rate Analysis (with Class of 2019 data) One of the most frustrating parts of the MBA application process is waiting to hear back from the...

As you can see in this score card, Section 5 was not "best" section according to this criteria. However, I want to especially dedicate this article to the best...