Last visit was: 14 Jul 2025, 05:31 It is currently 14 Jul 2025, 05:31
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
18,659
 [29]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 18,659
 [29]
4
Kudos
Add Kudos
25
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,569
Own Kudos:
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,569
Kudos: 741,243
 [16]
10
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 18,659
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,569
Own Kudos:
741,243
 [1]
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,569
Kudos: 741,243
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
enigma123
This is where I always get confused:

Height becomes the leg opposite 60 degrees angle and the hypotenuse, which is the side of an equilateral triangle can be found from the ratio: \(\frac{height}{side}=\frac{\sqrt{3}}{2}\) --> \(side=\frac{26}{\sqrt{3}}\).

How come we decide that it will be the leg opposite to 60 degrees angle?

I am fine with the rest, but struggles in the above concept.



Answer: A.

Check this: math-triangles-87197.html

Each angle in an equilateral triangle is 60 degrees, hence the height is opposite that angle:
Attachment:
Equilateral.png
Equilateral.png [ 7.61 KiB | Viewed 30601 times ]
Hope it's clear.
avatar
pbull78
Joined: 16 Dec 2011
Last visit: 13 Oct 2012
Posts: 28
Own Kudos:
21
 [1]
Given Kudos: 12
GMAT Date: 04-23-2012
Posts: 28
Kudos: 21
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel i have small query
since we have given coordinates of points P and Q but where its mentioned that these points are going to form the equlateral triangle , that triangle can be some other triangle also, whose height is the distance between points P and Q.
and if we use two formulaes
one Height for the equt triangle = rt3/side
from there we can get side and from side we can find area of the equlateral triangle rt3/4 side sqr
am i right , need ur feedback thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,569
Own Kudos:
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,569
Kudos: 741,243
Kudos
Add Kudos
Bookmarks
Bookmark this Post
pbull78
Bunuel i have small query
since we have given coordinates of points P and Q but where its mentioned that these points are going to form the equlateral triangle , that triangle can be some other triangle also, whose height is the distance between points P and Q.
and if we use two formulaes
one Height for the equt triangle = rt3/side
from there we can get side and from side we can find area of the equlateral triangle rt3/4 side sqr
am i right , need ur feedback thanks

The red part: we are not told that. We are given two points P and Q and are told that the height of some equilateral triangle XYZ is the same as the length of line segment PQ. Next, we calculated the length of PQ, which tuned out to be 13 and found the area of an equilateral triangle which has the height of 13.

Hope it's clear.
User avatar
Sachin9
Joined: 22 Jul 2012
Last visit: 25 Dec 2015
Posts: 355
Own Kudos:
Given Kudos: 562
Status:Gonna rock this time!!!
Location: India
GMAT 1: 640 Q43 V34
GMAT 2: 630 Q47 V29
WE:Information Technology (Computer Software)
GMAT 2: 630 Q47 V29
Posts: 355
Kudos: 172
Kudos
Add Kudos
Bookmarks
Bookmark this Post
wondering the level of this problem :shock:

this prob wont take much time if you know the formulae for distance between 2 points and the one for height of a equilateral triangle
avatar
Kwintessens
Joined: 11 Sep 2012
Last visit: 21 Oct 2013
Posts: 5
Own Kudos:
11
 [1]
Posts: 5
Kudos: 11
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
The (x, y) coordinates of points P and Q are (-2, 9) and (-7, -3), respectively. The height of equilateral triangle XYZ is the same as the length of line segment PQ. What is the area of triangle XYZ?
A. 169/√3
B. 84.5
C. 75√3
D. 169√3 /4
E. 225√3 /4
Attachment:
Triangle.PNG
The formula to calculate the distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is \(d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\).

So the distance between P and Q is \(d=\sqrt{(-2+7)^2+(9+3)^2}=13\). (Else you can find the length of PQ by realizing that PQ is a hypotenuse of 5:12:13 right triangle)

So we know that the height in equilateral triangle XYZ equals to 13: \(height=13\)


Slightly different approach that boils down to the same after finding the side of PQ = 13:

The height of an equilateral triangle equals: S\(\sqrt{3}\)/2, in which S represents the length of the side of the triangle. S is found when the height is multiplied by 2 and divided by \(\sqrt{3}\): 13*2 / \(\sqrt{3}\).

The area of a triangle is found with (height * side)/2, hence: (13* 26\(\sqrt{3}\) / 2) so: 338\(\sqrt{3}\)/2 which is 169/\(\sqrt{3}\).

Hope this helps for the people that got stuck after finding the height.
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 146
Own Kudos:
695
 [1]
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
AccipiterQ
The (x, y) coordinates of points P and Q are (-2, 9) and (-7, -3), respectively. The height of equilateral triangle XYZ is the same as the length of line segment PQ. What is the area of triangle XYZ?


A) \((169*\sqrt{3})/3\)

B) 84.5

C) 75*\(\sqrt{3}\)

D) \((169*\sqrt{3})/4\)

E) \((225*\sqrt{3})/4\)


The formula for the distance between two points (x1, y1) and (x2, y2) is:
.

One way to understand this formula is to understand that the distance between any two points on the coordinate plane is equal to the hypotenuse of a right triangle whose legs are the difference of the x-values and the difference of the y-values (see figure). The difference of the x-values of P and Q is 5 and the difference of the y-values is 12. The hypotenuse must be 13 because these leg values are part of the known right triangle triple: 5, 12, 13.

We are told that this length (13) is equal to the height of the equilateral triangle XYZ. An equilateral triangle can be cut into two 30-60-90 triangles, where the height of the equilateral triangle is equal to the long leg of each 30-60-90 triangle. We know that the height of XYZ is 13 so the long leg of each 30-60-90 triangle is equal to 13. Using the ratio of the sides of a 30-60-90 triangle (1:\(\sqrt{3}\): 2), we can determine that the length of the short leg of each 30-60-90 triangle is equal to 13/. The short leg of each 30-60-90 triangle is equal to half of the base of equilateral triangle XYZ. Thus the base of XYZ = 2(13/) = 26/.

The question asks for the area of XYZ, which is equal to 1/2 × base × height:



The correct answer is A.

For the LIFE of me I don't get why the OE is correct, and why my method is wrong, I'll post my method in the first reply


OK, so the OE states to figure out what PQ equals, which is very easy, just pythagoras it, and you get 13. It then says that this number is equal to the height of equilateral triangle XYZ. So my logic is this:

we know that the height of an equilateral triangle = \(\sqrt{3}/2\)*side. So since we already know the height, we can solve for any side:

13= \(\sqrt{3}/2\)*side

26=\(\sqrt{3}\)*side

\(26/\sqrt{3}\)=side

Great, now we have a side.

Area of an equilateral triangle? \((side^2*\sqrt{3})/4\)

so we have \((26/\sqrt{3}^2)*\sqrt{3}\))/4

that ends up with \(((676/3)*\sqrt{3}\))/4 which is obviously not the right answer. How on Earth does this not work??

edit: edited for formatting
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,569
Own Kudos:
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,569
Kudos: 741,243
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AccipiterQ
AccipiterQ
The (x, y) coordinates of points P and Q are (-2, 9) and (-7, -3), respectively. The height of equilateral triangle XYZ is the same as the length of line segment PQ. What is the area of triangle XYZ?


A) \((169*\sqrt{3})/3\)

B) 84.5

C) 75*\(\sqrt{3}\)

D) \((169*\sqrt{3})/4\)

E) \((225*\sqrt{3})/4\)


The formula for the distance between two points (x1, y1) and (x2, y2) is:
.

One way to understand this formula is to understand that the distance between any two points on the coordinate plane is equal to the hypotenuse of a right triangle whose legs are the difference of the x-values and the difference of the y-values (see figure). The difference of the x-values of P and Q is 5 and the difference of the y-values is 12. The hypotenuse must be 13 because these leg values are part of the known right triangle triple: 5, 12, 13.

We are told that this length (13) is equal to the height of the equilateral triangle XYZ. An equilateral triangle can be cut into two 30-60-90 triangles, where the height of the equilateral triangle is equal to the long leg of each 30-60-90 triangle. We know that the height of XYZ is 13 so the long leg of each 30-60-90 triangle is equal to 13. Using the ratio of the sides of a 30-60-90 triangle (1:\(\sqrt{3}\): 2), we can determine that the length of the short leg of each 30-60-90 triangle is equal to 13/. The short leg of each 30-60-90 triangle is equal to half of the base of equilateral triangle XYZ. Thus the base of XYZ = 2(13/) = 26/.

The question asks for the area of XYZ, which is equal to 1/2 × base × height:



The correct answer is A.

For the LIFE of me I don't get why the OE is correct, and why my method is wrong, I'll post my method in the first reply


OK, so the OE states to figure out what PQ equals, which is very easy, just pythagoras it, and you get 13. It then says that this number is equal to the height of equilateral triangle XYZ. So my logic is this:

we know that the height of an equilateral triangle = \(\sqrt{3}/2\)*side. So since we already know the height, we can solve for any side:

13= \(\sqrt{3}/2\)*side

26=\(\sqrt{3}\)*side

\(26/\sqrt{3}\)=side

Great, now we have a side.

Area of an equilateral triangle? \((side^2*\sqrt{3})/4\)

so we have \((26/\sqrt{3}^2)*\sqrt{3}\))/4

that ends up with \(676/3*\sqrt{3}\)/4 which is obviously not the right answer. How on Earth does this not work??

\(\frac{676}{3}*\sqrt{3}*\frac{1}{4}=\frac{169}{\sqrt{3}}\).

Please, format properly.
User avatar
Gmatdojo
Joined: 21 Aug 2013
Last visit: 02 Jan 2014
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The trouble there is that you squared 26 and so end up in a foggy place where only calculators can safely travel.
If you had not multiplied, you'd have gotten an answer with 2*2 in the numerator, and this would have been an easy cancelation with the 4 in the denominator. After all 676/4 is 169.
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 146
Own Kudos:
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Gmatdojo
The trouble there is that you squared 26 and so end up in a foggy place where only calculators can safely travel.
If you had not multiplied, you'd have gotten an answer with 2*2 in the numerator, and this would have been an easy cancelation with the 4 in the denominator. After all 676/4 is 169.

yeah I see that now, I actually just gave up after i squared 26, because I figured I was too far off track. Looks like I had it right after all haha
User avatar
anu1706
Joined: 15 Jul 2012
Last visit: 13 Jun 2020
Posts: 34
Own Kudos:
Given Kudos: 7
Posts: 34
Kudos: 115
Kudos
Add Kudos
Bookmarks
Bookmark this Post
enigma123
The (x, y) coordinates of points P and Q are (-2, 9) and (-7, -3), respectively. The height of equilateral triangle XYZ is the same as the length of line segment PQ. What is the area of triangle XYZ?

A. 169/√3
B. 84.5
C. 75√3
D. 169√3 /4
E. 225√3 /4
Attachment:
Triangle.PNG

This is is how I am trying to solve this:

Length of PQ = 13 i.e. this is 5:12:13 Right angle triangle.

We are told that this length (13) is equal to the height of the equilateral triangle XYZ. An equilateral triangle can be cut into two 30-60-90 triangles, where the height of the equilateral triangle is equal to the long leg of each 30-60-90 triangle. We know that the height of XYZ is 13 so the long leg of each 30-60-90 triangle is equal to 13. So the sides of the 30:60:90 triangle are x:x\(\sqrt{3}\):2x.

Now here I am stuck. What will be the three sides of a triangle?


I would give a simple solution which Bunuel can correct me if I am wrong....PQ=13 which is from distance formulae and its given that it is equals to height of any equilateral triangle. So my logic is as per 30-60-90 rule , altitute is rt3timesX (X is side opposite to 30degree). So now here rt3X=13. So X=13/rt3.. And area of triangle = 1/2*base(13/rt3)*13 =169/rt3..
Bunuel correct me if I am wrong please.
avatar
Varisht
Joined: 03 Mar 2019
Last visit: 03 Jan 2022
Posts: 5
Own Kudos:
11
 [1]
Given Kudos: 14
Status:Applying
Products:
Posts: 5
Kudos: 11
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Height becomes the leg opposite 60 degrees angle and the hypotenuse, which is the side of an equilateral triangle can be found from the ratio: heightside=3√2heightside=32 --> side=263√side=263.

How come we decide that it will be the leg opposite to 60 degrees angle?
User avatar
Mehadihasanshawon
Joined: 15 Mar 2020
Last visit: 03 Feb 2024
Posts: 7
Posts: 7
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
30-60-90
x-x sq. root3-2x
This is the simplest way to find a measurement of a leg. then the formula of a equilateral triangle can be applied.

Posted from my mobile device
Moderators:
Math Expert
102569 posts
PS Forum Moderator
691 posts