Step 1: Probability of Not Rolling (4,4)The probability of rolling (4,4) in a single roll is:
\(P(4,4) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}\)
The probability of
not rolling (4,4) in a single roll is:
\(1 - \frac{1}{36} = \frac{35}{36}\)
If you roll the dice \(n\) times, the probability of
never rolling (4,4) is:
\(\left(\frac{35}{36}\right)^n\)
Step 2: Finding the Smallest \(n\)We need to find the smallest \(n\) such that the probability of at least one (4,4) is greater than \(\frac{1}{2}\). This means:
\(1 - \left(\frac{35}{36}\right)^n > \frac{1}{2}\)
Rearranging:
\(\left(\frac{35}{36}\right)^n < \frac{1}{2}\)
Step 3: Estimating \(n\) Without a CalculatorWe can approximate it using the
exponential approximation:
\((1 - x)^n \approx e^{-nx} \quad \text{for small } x.\)
Here, \(x = \frac{1}{36}\), so:
\( \left(\frac{35}{36}\right)^n \approx e^{-n/36}\)
We need:
\(e^{-n/36} < \frac{1}{2}\)
Since a well-known approximation is:
\(e^{-0.7} \approx 0.5,\)
we can set:
\(\frac{n}{36} \approx 0.7\)
Solving for \(n\):
\(n \approx 0.7 \times 36 = 25.2\)
Since \(n\) must be an integer, we round up to
\(n = 25\).
Bunuel