GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Oct 2019, 07:56

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Three children, Doug, Darla, and Dave, all collect marbles. The number

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 58446
Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

28 Aug 2017, 23:37
00:00

Difficulty:

35% (medium)

Question Stats:

73% (02:13) correct 27% (02:20) wrong based on 123 sessions

### HideShow timer Statistics

Three children, Doug, Darla, and Dave, all collect marbles. The number of Doug’s marbles is 2/5 the number of Darla’s marbles. However, Doug has 4 times as many marbles as Dave does. The number of Darla’s marbles is how many times the average of Doug and Dave’s marbles?

A. 1/4
B. 1/2
C. 3/2
D. 2
E. 4

_________________
Senior PS Moderator
Joined: 26 Feb 2016
Posts: 3335
Location: India
GPA: 3.12
Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

29 Aug 2017, 01:21
If the number of Doug's marbles is $$\frac{2}{5}$$(40%) of the number of Darla's marbles,
Assume Darla has 10 marbles, making the number of marbles Doug has 4.
It has also been given that the Doug has 4 times as many marbles as Dave.
Therefore, Dave will have 1 marble.

The average of Doug and Dave's marbles is $$\frac{(1+4)}{2} = \frac{5}{2}$$

Since we have been asked how many times is the number of Darla's marbles to the average,

it must be $$\frac{10}{{\frac{5}{2}}$$ = $$\frac{10*2}{5}$$ = 4(Option E)
_________________
You've got what it takes, but it will take everything you've got
Intern
Joined: 25 Jan 2013
Posts: 20
Concentration: Marketing, Strategy
GPA: 3.64
Re: Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

29 Aug 2017, 01:35
Bunuel wrote:
Three children, Doug, Darla, and Dave, all collect marbles. The number of Doug’s marbles is 2/5 the number of Darla’s marbles. However, Doug has 4 times as many marbles as Dave does. The number of Darla’s marbles is how many times the average of Doug and Dave’s marbles?

A. 1/4
B. 1/2
C. 3/2
D. 2
E. 4

let's assume Darla has 20 marbles. So, Dough has =(2/5)*20= 8 marbles and Dave has 2 Mabels
the average of Dough and Dave marbles is 5. So, Darla has 4 times the average of Doug and Dave’s marbles.
_________________

pressing +1 kudos is a nice way to say thanks

Senior SC Moderator
Joined: 22 May 2016
Posts: 3558
Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

29 Aug 2017, 19:19
Bunuel wrote:
Three children, Doug, Darla, and Dave, all collect marbles. The number of Doug’s marbles is 2/5 the number of Darla’s marbles. However, Doug has 4 times as many marbles as Dave does. The number of Darla’s marbles is how many times the average of Doug and Dave’s marbles?

A. 1/4
B. 1/2
C. 3/2
D. 2
E. 4

I picked numbers, my math went awry, and I switched to algebra.

Doug is the common element.

Darla = A
Doug = B
Dave = C

B's marbles = $$\frac{2}{5}$$A, so A = $$\frac{5}{2}$$B

B has 4 times as many marbles as C.

B = 4C, and

C = $$\frac{B}{4}$$

Average of B and C:

$$(\frac{4}{4}$$B + $$\frac{B}{4})$$ *$$\frac{1}{2}$$ = $$\frac{5}{8}B$$

The number of marbles that A has is how many times the average of B and C’s marbles?

$$\frac{\frac{5}{2}B}{\frac{5}{8}B}$$ =

$$\frac{5}{2}$$ * $$\frac{8}{5}$$ = 4

_________________
SC Butler has resumed! Get two SC questions to practice, whose links you can find by date, here.

Instructions for living a life. Pay attention. Be astonished. Tell about it. -- Mary Oliver
Target Test Prep Representative
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2815
Re: Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

01 Sep 2017, 12:11
Bunuel wrote:
Three children, Doug, Darla, and Dave, all collect marbles. The number of Doug’s marbles is 2/5 the number of Darla’s marbles. However, Doug has 4 times as many marbles as Dave does. The number of Darla’s marbles is how many times the average of Doug and Dave’s marbles?

A. 1/4
B. 1/2
C. 3/2
D. 2
E. 4

We can let Doug’s marbles = A, Darla’s marbles = B, and Dave’s marbles = C. Thus:

A = (2/5)B

(5/2)A = B

B = 5A/2

and

A = 4C

A/4 = C

Let’s find the average number of Doug’s and Dave’s marbles: (A + A/4)/2 = (5A/4)/2 = 5A/8. Thus, the number of Darla’s marbles is (5A/2)/(5A/8) = 5A/2 x 8/5A = 4 times the average number of Doug’s and Dave’s marbles.

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Manager
Joined: 19 Apr 2017
Posts: 172
Concentration: General Management, Sustainability
Schools: ESSEC '22
GPA: 3.9
WE: Operations (Hospitality and Tourism)
Re: Three children, Doug, Darla, and Dave, all collect marbles. The number  [#permalink]

### Show Tags

20 Feb 2019, 08:21
Since the names starts with D, i am using their last letter Doug= G, Darla= A Dave= E

Using Propotions
5G=2A -> G:A =2:5 x2 =4:10
G=4E -> G:E = 4:1
Make G = 4 to combine the two equations

G:A:E = 4:10:1

Average of G and E = (G+E)/2 = 5/2

how many times is G=10 will be equal to 5/2=2.5
-> 10/2.5= 4 = E
Re: Three children, Doug, Darla, and Dave, all collect marbles. The number   [#permalink] 20 Feb 2019, 08:21
Display posts from previous: Sort by